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ON TWO DIMENSIONAL  INCOMPRESSIBLE STEADY 

STATE FLOWS WITH SEPARATION 

by 

Alexander Pal 

Polytechnic Institute of Brooklyn 

ABSTRACT 

The subjects of this study are two-dimiiisional incompressible steady 

state flows which have constant vorticity (w) in a domain  N bounded by a 

closed streamline and are irrotational   in the complementary part   P of thr 

flow domain, and such that the streamfunction   v(z) (z - x+iy) satisfies on 

the boundary  v = d  PO^ N  Bernoully's law 

ill ] 
/ ■ vn/„ P N 

(1) X*        -  l-r-i        =  \   =   constant >  0. 

Arcording to O.K.   Batchelor such flows (below called "Batchelor-flows") 

may be models of laminar flows exhibiting separation phenomena in case of 

high Reynolds numbers. 

Let f{C) (C ■ 5 ♦ ill denote a regular function in the domain E; 

r\ ^ 0 ("open flows') or 0 < r| < n  ("channel-flows") which is  o|f|j  as 

| C |  - co,   and such that on 3 E 

(a)   |f' (C) 1   is bounded away from 0,    (b) is even in  ?    (c) non-increasing 

if ff > 0,   and   (d) f'(C)(f"(^) satisfy Holder    - conditions and have finite real 

limits as   ?•••. 



The existence of Batchelor - type flows in the domain  ".  - f(E), 

bounded by the streamlim (t.)    f = 0 and in case of channel flows   .  - T  is 

proved by direct methods of variational calculus.    In particular, let 

Tm =  JJ{7[*(f(C,)]}2d?d^   ' 
E 

LU] = - 2       ,  |     ilf(z)dxdy, A[*] =      if      dxdy . 

'ji(z)< o *;z)<o 

Then, if u(z) is an arbitrary function for which these functionals are Unite, 

the problems 

(III) T[u]   -  \ A[u]   =  min. 

fX   and  L[t|(]   =  m>  0  given parametersJ 

and 

(IV) TLU]   -  X A[u]   - ID L[u] = min.  , 

f X  and ü > 0  given par.imetersj , have solutions which can be considered 

stream functions of the Batchelor - type, if only   *   (and   c   in cast   of 

problem IV) satisfy certain reasonable inequalities.    The region  N is tht n 

defined by the condition  i(z)< 0,   i the solution of problems III or IV.    The 

flow is asymptotically uniform at large distances.    Further properties of 

the solution:   .i f(C) )  i» an increasing function of   | r 1   and ev» n in ' .    The 

sets   NÜ^ N and   P are simply connected and  ^N  contains a finite arc of 

M«    For solutions of IV or if f(C) / C = const., (straight boundaries of     ) 

N itself is connected. 

Applying the minimum - principle to special variations of   .   near  ^ P, 

n 



it i« shown that if z  converges in P to the   ; = 0  streamline, then 

lim inf    |Viii|  > XE    . 

Consequently Y   is rectifiable.    By analytic variations of the domain it is 

shown that  f   and  N satisfy an integral equation similar to the one found 

by P. R.  Garabedian and D.  C. Spencer in the case of cavitat;on flows. 

Properties of the solution,  such as boundedness of N and that the matching 

condition (1) is satisfied along  y   almost everywhere,  can be deduced from 

this integral equation. 

Solutio is of III are never "trivial" ,  i.e.  the domain  N is never 

empty.    Solutions of IV are non-trivial if \   exceeds a limit dependent on  \. 

Such solutions exist unless A has straight L   undaries. 

The set of solutions depends continuously on A,>   and •  or  m. 

m 
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I 

Most frequently used notations. 

A: the physical flow domain in the plane z = x+iy, bounded 

by a streamline 9 in case of open flows,  and the stream- 

lines 3,3   in case of channel flows. 

E: the halfplrne 0< r| for open flows,  the strip 0< r» < n for 

channel flows of the '-plane.  (C = ' + i"1). 

C =g(z) the analytic function mapping A conformally into the half- 

plane or strip E.    See for details Section 1.1. 

z = f(C) the inverse of g(z). 

a.u: a   = |fV)|. n = inf Jlg'U)! 2:z€A |; 

A,M: A    = 1/a2, 1^1 = 1/1^(0)1 2 . 

If u (z) is a function in .*. , S a subset of   \ ,  then 

u(C) =u(f(C)) , 

S    =g(S) . 

u+(z)u_(z) the positive and negative parts of the function u (a), 

P[ul 0[u], N[u]: for any function a (z) the subset of the interior of the 

domain of definition of u,  where u -0, =0,< 0 respectively. 

Q[u] -^ N[u]üo[u]. 

Y,r: Y = öPOON, ^ = ap-8,. 

(For open flows 6   is the empty set. ) 

?,Int (S), I If S is any set,  then 5 is its closure,   Int (S) the interior 

mes(S), mes,(S)        \ of S,   mes(S) the plane measure of S,  me8,(S) i*s linear 

measure. 



Functionals: 

DLU.VIS] 

D[II|S] 

T[U|S] 

L[u|S] 

TCu],L[u]: 

A[u] 

Ag or MS) 

V[aj 

v'Lu] 

W[u] 

^,m, i 

Function Spaces 

If S is an open set,  u, v functions in S,   then 

=        7u 7 v dx dy, J,Js 
= D[u,u|s]. 

If u (z) is a function in A , u (z) = u( !).   then 

= DC «-ill s], 

= -2        u (z) dx dy. 
JJS 

If S is not specified in these functionals,   the integration 

should be extended over the entire domain of the func- 

tions involved. 

dxdy. 
JQ[u] 

But: 

is the plane measure of the set S. 

= T[u]  m\  A[u] 
? 2 

= T[u + ] - HI   D[u_]/L[u J   -XA[u] 

BTCtt3-XACtt]-aiLCtt]a 

are specified positive constants. 

7 : See Section 1.2 
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INTRODUCTION 

The problems connected with wakes and ca   'lies appearing in 

fluid flows have stimulated a great deal of applied and pure mathema- 

tical research since Helmholtz described a mathematical model of 

cavitational flows.    An impressie body of mathematical results is 

available about incompressible irrotational cavity flows.    In the plane 

case,   the shape of the cavity can be obtained in special cases by con- 

formal mapping techniques; (cf.   e.g.,   Birkhoff-Zarantanello:    Jets, 

Wakes and Cavities,   1957) and even in the more difficult axially sym- 

metric three dimensional case  an explicit solution was constructed by 

Garabedian (1954).    The existence of solutions of flows with cavities 

behind more general obstacles was shown in the plane and axially 

symmetric cases bv Garabedian and Spencer (1952) and by Garabedian, 

Lewy,   and Schiffer (1952) respectively.    Uniqueness of solution is 

proved by Gilbarg (1952),  Serrin (1952).    Integral equations are derived 

by the method of interior variations,   and it is shown that the free bound- 

ary is an analytic curve.    For an extensive bibliography of capitation 

flows,   see Gilbarg (I960). 

The model of flows with cavitation has been widely applied to 

problems of wakes behind obstacles.    This practice may be objected to • 

on the basis that in cavity flow the velocity is constant on the free bound- 

ary; however,   adjacent fluid particles of the wake region would   de- 



aelerated the neighboring free stream particles by viscous friction. 

Admittedly,   for unbounded regions there is no assurance that for 

large Reynolds numbers,   R,   steady state   solutions  of the Navier - 

Stokes equations exist at all,   but if  such a solution exists for R 

so large that the singular perturbation method of boundary layers 

is applicable then this solution is probably not well approximated 

by the cavity model. 

The assumption that the flow is irrotationai is in general 

justified by Helmholtz' s vortex-theorems,   in any region covered 

by  streamlines originating in infinity.    Indeed,   in the Lagrangian 

frame of reference the initial condition of zero vorticity for 

t =  - oo   implies no vorticity anywhere along the entire streamline. 

However,   if the flow domain contains a region covered h) closed 

streamlines,   then a non-viscous flow becomes indeterminate in 

this region.    In fact,   arbitrary constant vorticity may be prescribed 

along each closed streamline dependent only on the value of the stream- 

function   ..      This indeterminacy is of course merely a result of the 

excessive idealization implicit in the Euler-or Lagrange-equations. 

The indeterminacy disappears if steady stat« viscous flows are con- 

sidered for a given set of boundary conditions,   such that the Reynolds 

number R of the flow converges to oo,    Batchelor (1956,   1957) pointed 

out that in the 2-dimensional case under such circumstances a limit 

flow may exist,   containing regions bounded by closed streamlines,   in 

which the vorticity is constant (eddy  regions) and outside w'uch the 



flow is irrotatioaal.    The eddy regions are separated from each 

other and from the outside irrotational region by slipstreams 

(streamlines of velocity discontinuity) which are the limits of 

boundary layer type velocity distributions.    The velocities q1 , 

c^   on the two sides of a slipstream must satisfy Bernoulli' s law, 

and therefore along the i - th slipstream 

(i) i^r-H' ■ xi 
on each slipstreamline.    In the simplest case both the eddy region 

N and the irrotational region P are bounded by the domain-boundary 

and a single slipstream y,   so that (1) can be written as 

(2) | qpl" -1%|3 ■x 

along Y. 

In contrast to c avitation-flows,  little is known about Batchelor 

type separated flows.    Goldshtik (196^) proved the existence of such 

flows for  —0 by methods of functional analysis in bounded domains. 

He also showed that if the vorticity uu in the eddy region exceeds a 

certain value w    then at least two solutions exist (other than the o 

trivial solution with no eddy region) and that for w s-*>    no solution 

other than the trivial exists.    Childres^ (1965) investigated the ^ ^ 0 

case with the asymptotic approximation   of slender eddies,   and 

found a simular bifurcation.    To my knowledge no rigorous existence- 

proof exists for the \ •>() case,   and no special explicit solution for the 

unknown boundary Y,   although both Goldshtik and Childress give numerical 

See also Prandtl (I96l). 



results ui der the special assumptions made in their papers. 

Mathematical description of the separated flow-problems to be 

investigated. 

Let us introduce the strearnfunction » (z),   (z = x + i y) in 

the flow-domain \,   which is simply connected open set bounded 

by one or two streamlines extending to infinity*.    If - is bounded 

by a single streamline ß,   we will talk about an open flow,   in the 

case of two streamlines (ß.ß1 ) about a channel flow.   (This is not 

intended as a complete definition of the flow domain;   -will alsn 

be required to satisfy certain additional conditions,   which allovvs 

Steiner symmetrization of the strearnfunction      (z).    More precise 

definition will be given in Section  1. 1).    It is assumed that - is 

simply covered by streamlines,  hence .   (z) ^s one-valued on the 

Riemann surface in which A is embedded.    The eddy region N = Nri 

is bounded by ß and a slipstream J me Y.    We assign the value 

| (z) = 0to ß and v.    In the simplest case Y is the only subset of      in 

which v  (z) vanishes.    Thus,   for positive vorticity in N,   ♦   (z)^0 in N, 

and . (z) > 0 in P[<J= A -N-Y.    ♦ (z) should satisfy the equation 

(3)       "^  = x.s {4) 

It will only be assumed that ■Ms locally schlicht.    Thus it may cover 
multiply a plane domain without branchpoints. 



in A,  where s   (i^) is the characteristic function of N [v].    Further 

V  (z) should be continuous on ß (and ß' ),   and assume the values of 0 

on ß (and - on ß' ).    If the set N is bounded (as it will be proved for 

almost all cases),   the asymptotic behavior of *   (z) is (up to a trivial 

factor in the case of open flows) determined by the geometry of A, 

This will be discussed in Section 1. 1.    On Y in addition to the condition 

I|I  (z)=0,  we have the matching condition between the normal derivatives 

of f on the two sides of Y  : 

'a 

obtained from (2). 

The purpose of this paper is to prove the existence of a two 

parameter family of flows in the given domain u which satisfies these 

conditions.    (The two parameters are X  and either the vorticity x or 

the angular momentum m of the wake region. )   As a side result minimum- 

principles will be derived of which the streamfunctions are solutions. 

These minimum-principles might prove convenient in the numerical so- 

lution of the separated flow-problem.    They also offer interesting analogons 

or extensions of the energy-principles of potential flow theory. 

The X^O case will not be treated because it is felt that it has no 

physical importance.    In fact,   \ < 0 would correspond to flows,   in which 

q^J< j^N| along Y.    In such a case the wake region would continuously loose 

kinetic energy in the boundary layer along ß,   which would not be replaced 

through the boundary layer along the slipstream Y . 



It also should be observed that in case of channel flows it is in 

general unrealistic to assume that a viscous flow with high Reynolds 

number remains everywhere approximately harmonic in the vicinity 

of ß'.    Rather,   eddy regions can be expected adjacent to both 0 and p'. 

It would be easy to allow eddy regions bounded by   I|I = r streamlines; 

but this is for the sake of simplicity not done here.    Nevertheless,   if 

ß1   is straight,   we get a realistic flow by reflection of - and .   (z) on ß' . 

This paper will have four parts.     Part I contains preliminary 

results,   including the formulation of the minimum-problems.     Section 

1. 1 discusses the flow domain,   Section  1.2 introduces a functional 

analugon    to the Dirichlet-integral and the virtual mass,   aad together 

with section  1. 3 discusses the properties of this functional.    Section 

1.4 defines related minimum-problems which are formally equivalent 

to the flow-problem just described.    In Sections 1. 5 and 1. 6 both neces- 

sary and sufficient conditions are given under which the functionais 

appearing in the minimum-problems have lower bounds. 

Part II contains the proof that the minimum-problems chosen for 

investigation have solutions.    In particular,   2. 1 and 2. 2 contain pre- 

liminary lemmas on the equicontinuity and lower bound of admissible 

functions.    In 2. 3,   2.4,   and 2. 5 it is shown that if the set 0=0 ^/JC- - 

where | vanishes,   is a givenclosed set,   then the so c btained "restricted' 

minimum-problems have solutions,   which satisfy (3).     Further lemmas 

needed to clarify the limitations on the vertical and horizontal spread 

of the eddy region are in Sections 2. 6,   2. 7,   and 2. 8.    Finally,   in 2. 9 



it is shown that any minimum-sequence of admissible functions contains 

a subsequence converging to an admissible function,  which is thus the 

solution of the minimum problem. 

The unboundedness of the flow domain makes this proof more com- 

plex.    In the theory of cavitation flows this difficulty is circumvented 

(see Garabedian-Spencer (1952)) since domains considered there permit 

Steiner symmetrization relative to both the real and the imaginary axis 

accompanied by a decrease in the variational functional involved.    In the 

present problem only Steiner symmetrization relative to the imaginary 

axis will be applied.    Therefore additional tools will be needed for the 

proof of the compactness of the set of competing functions.    This is pro- 

vided in the fundamental lemma 2. 8.    This lemma essentially states that 

if a function • (z) has its support of finite area A in parallel strip b of unit 

width,   and has a finite Oirichlet integral O,  then a unit square subset 

S*C5 exists,   such that 

[ ili(z)dxdy |>  -y-   j  JJ  Hz)dxd   ' 

S* A D '   S 

where k is an absolute constant. 

In Part III the topological properties of the solution will be investigated. 

In particular,   it will be shown that the domain P is simply connected,   the 

set N is the disjoint union of simply connected open sets (Section 3.4),   the 

set N is connected. *   This latter result is based on the theorem,   interesting 

I did not succeed in showing in all cases that N itself ib  connected. 



in itself,   that in a two-dimensional potential flow around an obstacle 

B which is free to move without rotation,  no equilibrium position of 

B is possible unless B touches the flow boundary.    In particular,   it 
ii 

was shown with the aid of the investigation of Schiffer and Szego (1949) 

on the properties of Green' s function,   that the virtual mass as  a func- 

tion of the poeition of B is a superharmonic function.    (Section 3.1). It 

is further shown by application of the minimum-condition to certain 

restricted variations of the positive part of the stream function,  that 

the gradient of the latter has in P a positive lower bound (Section 3. 5). 

From this follows easily (Section 3.8) that the boundary y  separating 

the regions P and N is rectifiable and that the boundary of N contains 

an arc of ß of nonzero length.    'Section 3.6).   It also follows that the 

minimum-problem s considered have "non-trivial",   i. e. ,  not every- 

where irrotational solutions in given regions of the (JJ. 
v ) plane (Section 

3.7). 

In Part IV a variant of the method of interior variations of 

Garabedian and Spencer (1952) is applied to derive an integral equation 

for the solution and the curve /•    The method is applied in a halfplane 

or parallel strip conformal image of   -»,   rather than in -» itself; this 

results in a simplified calculation and somewhat more explicit form of 

the integral equation.    (Section 4. 1).    This integral equation is used to 

show that the matching condition (4) is satisfied almost everywhere on 

/ (Section 4. 2),  and that the eddy region is bounded (Section 4. 3).    The 

remaining sections contain results on the connectedness of the eddy region. 

10 



In the derivation of the matching condition a difficulty not encountered 

in works on cavitation flows is again the iack of the twofold symmetrization, 

and that the boundary Y is probably not an analytic curve; in any case, 

analyticity could not be proved.    Although Y is probably smooth,   this could 

not be proved either.    Nevertheless,   results on the boundary behavior 

in the theory of the functions analytic in the unit circle,   in particular some 

theorems of Fatou,   F.  and M.  Riesz,     and Privaloff    helped to overcome 

this difficulty. 

11 



(1.1) 

PART 1.    FORMULATION OF THE MINIMUM PROBLEMS 

1. 1   The flow domain.       Let   ^ = g (z) (C = ? + i I»   a = x + i y) denote 

a function analytic in "which maps ^ in a locally schlicht manner into 

the domain E,   where 

E is the  1 > 0 halfplane for open flows, 

E is the strip 0 <ri < ^   for channel flows. 

We may impose the additional conditions that the line ß must be mapped 

into the open real axis,   and for channel flows,   the line ß'  onto the open 

line  T1 = T.    Thus z = co is mapped into r = oo.    It is clearly no restric- 

tion of generality to assume that ß contains the origin of the z-plane. 

We may then normalize g (z) by setting g (0) = 0,   and in the case of open 

flows,   g'  (oo) =  !■    The inverse of the fraiction g will be denoted as 

z = f (C).    Only such a will be considered,   for which 

(a) f ( C ) is an even function of g and f (0) = 0, 

(b) f   ( T ) is a constant or a bounded decreasing 

function of |»1  ; 

(c) V   ( :  ),   f^ C ) are bounded in E; 

(d) f   ( C ) and f"  ( [  ) have finite limits if   C -• oo   (along any path), 

and the former limit is non-zero. 

Let us consider now the boundary values 

P (5 )■ logl f   (? )| (?    real) 

and in case of channel-flows 

-*(') = loglf   (?♦!")     . 

12 
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(1.1) 

It will be shown that   P( ' ){and p (§)) determines f ( ? ) uniquely, 

and in case of open flows find sufficient conditions that the function 

P ( f ) may define an admissible domain-function, 

FVoposition.   The admissible domain-function i { £ ) ia uniquely 

determined by the boundary values of If   (^)|on3E.    If I f ( ' + *'l )j 

is a non-increasing function of   ? on the boundary,   then it is constant 

or decreasing in E. 

We note first that f ( ^ ) is continuous on ^ E,  because |f" ( ^ ) I 

is bounded.    Then uniqueness of the harmonic function log if' ( C )|is a 

consequence of the Phragmen-Lindelof theorem and the maximum' 

principle for both open and channel flows,    log f1 { l ) then determines 

ph f   ( C ) up to an additive constant   (to be obtained from the symmetry 

of A to the imaginary axis),    f ( C  ) determines then f ( C ) with the ad- 

ditional condition f (o) = 0. 

If it is now assumed that If (? + i r)) I is a non-increasing function 

of I ? | on 3 E,   then the harmonic function Re j f" ( '  )/ f'   ( C ) |  has non- 

positive boundary values on the real axis,   is zero on the imaginary 

axis,and bounded in the right half of E.    Therefore by the maximum- 

principle 

Re   1   f" (C)/ f   (C)}=   =jVlo8 p*   ^)|<0 

in E,   where the equality sign holds only if f   ( C  ) = constant.    Hence 

f   (5 + i r| )| is indeed a decreasing or constant function of   g I  with 

limit a •> 0 for 1 ? I- oo. 

I 

13 



(1.1) 

The functions f (C) -Q>   *"(£)■   analytical in E are there bounded 

by Poisaon' a theorem,   being defined as Poisson1 s integrals,   with 

bounded boundary values.    Since they have zero limits on the boundary 

for f "* oo,  by the Phragmen-Lindelof theorem 

limlfMO^a 
C - oo 

and 

lim|f'(:)l=0. 

ICH« 
Theorem.   Suppose that the function P (* ) is even,   non-increasing if 

• •> 0,   and ha^ a limit c (oo) for ' - oo.    Let the function p  (§ )-P  (oo) 

and its first derivative P' (') belong to some space L    (-oo,   c») with 

p > 1.    Further it is assumed that P  ( £ ),   P' (?)CLip Y,   i. e.   they satisfy 
ii 

Holder conditions 

(i)    |P (e+h) - p('j^Kh Y. 

U)      IP'(?+ h) -P (5) j-K  h Y. (0<Y<1). 

Then the relations 
1    f_Ü_L ii   J   e -' m    logf lC)--a- /   y.^   de 

.oo 

(4)       f (0) = (0) 

define an admissible domain function f( ') in E: ^ > 0,   such that 

lim 

Iwhoo 

limf(C) = ep(aD)=a>0. 

14 



(1.1) 

In fact,   the real part of (3) is a Poieson-integral,   and p (?) 

is continuous on the boundary where it assumes the boundary 

values P (?).    The Hilbert-transform   a( ? )   (cf.  Tltchmarsh,   1937, 

Chapter V) of P (? ) - P (oo ) also belongs by the equivalent of Privaloff s 

theorem (see Zygmund (1959) S 7. 5) to Lip    and L  .    Therefore, 

' (^) - 0 a.s f-• oo.    Furthermore f   (?) has a limit for r - 0 and 

lim      Im log f   ( ? ) = o (?) rro 
or 

lim log f   (C) = log V  (?) = P (f ) + i a (5 ), 
nio 

and 

lS)      Um      f   (?)= eP(00)=a. 
K '      ?-oo 

By differentiation of (3) with respect to ? and subsequ  nt inte- 

gi -»tion by parts oo oo 

zu i ,.\ i     f 
(6) f (c)   i r    p (9)-p (oo) Hn -1 r jim ^Q 

-oo -oo 

for   r|-»0 .   Since  p1   (Q ) belongs to L    and Lip   ,  we find by repetition 

of the previous argument 

where 0    (?) is the Hilbert-transform of   p'   (? ),  belongs to L 

and Lip    .    Thus 

lim     f ( ')/V{r ) = f (f )/f'(5 ) 

16 
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also belongs to L    and Lip   .    This implies by (5) 

lim f (5 )=0. 
f "" oo 

Thus it is proved that (c) and (d)  are satisfied.    The symmetry condition 

(a) is satisfied because the boundary values are symmetric and they 

determine f ( - ) uniquely as a symmetric function; that (b) is satisfied 

was proved earlier. 

A formal analogon of (3) for channel flows is given by 

(7)       logf   (.  ^^f     j^T^     +     -TWJ    c(d)d 

0 
I oo 

., «^ |        | __    .    1 ;,        ,     , 

n e     -cosh'           ,/a\.     ■     +co8hC        •« » »l j. P  ( 9  ) +         p   ( q  ) I d - 
1   J   Q    f cosh 9 -cosh ' cosh 9+cosh ' 

where   P { § )i   c    (?) are the boundary values of log I f { ' Wprescribed 

on ^ = 0,   r| = TT respectively. 

It seems likely that if ^ ( ' ), P ( • ) satisfy suitable differentiability 

and integrability conditions, then (7) defines an admissible domain-function 

for E:   0 < ^  < TT. 

We note that the half plane and the parallel strip are examples of 

admissible domains.    These domains,  which can be described by A = E, 

f ( s ) = '»  are particularly interesting.    Any non-trivial solution III,   IV, 

for such a domain describes a separated flow without apparent "reason" 

1*. 
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>;= 

(1) V = /T |> U -  y )] 3   dx  dy 

Z-B 

where * is harmonic in Z - B and 

I|I = Im(z + a/z + .   .   . ) 

in the neighborhood of co.    Then 

(2) V + AB=2 TT a 
ii 

where AB  is the area of B.    (cf.  Schiffer-Szego (1949)) 

We have to introduce a few notations to be used through this treat- 

ment : 

If S is an open domain,   u (z),   v (z) functions then 

* 
However,   it is possible to reflect the flow into the lower halfplane, 
and assume that the eddy is caused e.g.  by a flat plate of suitable 
length and position on the real axis. 

for the separation,   since the boundary of u is straight .    Such solutions 

will be called free eddy solutions. 

1. 2.    The e:!tension  of the concept of the virtual mass.    It was shown 

by Garabedian and Spencer that the existence problem of Riabouchinsky- 

flows can be tackled by solving the variatioralproblaii of minimum vir- 

tual mass.    Let K denote a smooth curve in the upper halfplane joining 

the points a.  b of the real axis.    * and the real axis bound a domain B1 . 

Bj^   and its mirror image in the lower halfplane form a domain B.    The 

virtual mass of B in a flow uniform at large distances is defined as 

17 
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D [u |s] =   D[u(u|sl. 

If S is not specified,   then the integrals have to be extended over the 

domain of definition of the integrand.   Thus e.g.   if u is defined in A, 

,2 

»«•«i/l^r-r-^lTf d • dn. 

We cannot apply the concept of virtual mass for general domains 

in this form.    It can be applied,  however,   if the integration is extended 

over E rather than over \    We define therefore the functional 

(3) T[u] = /7 (Vc  [u{:  ) .T1])
a  di dr^Dp- T] 

E 
where A 

u (z) = uU): z = f (C) 

T is certainly defined for piecewise smooth functions u    for which 

u,  (')rw  outside some circ   •.    If these functions form the space    7*, 
o to 

then T[u]is defined further for all elements of 7,   the closure of y' 

in the Dirichlet-metric. 
A f\ ^ A 

Let 0=0 [u Jdenote the subset of E where u = 0,   and suppose O is a 

measurable set in the plane measure.    Then by deinition 

(4) T  [u]   =   D[ü - r. | E - 6] + mes ( 6 ). 

an identity analogous to (2). 

18 
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Let   v    denote a family of open subsets of E for positive 

values of r such that 

^   c v     if   s <   r s r — 

and oo 
U rr = E . r 
r = o 

For open flows   £    ma/ be the half circle   j |C |<r>   ti > 0 } , 

for channel flows the rectangle-domain    ( - r, r) x (0,  n). 

By Green' s identity 

(5)       T [u] = limj D [Ö |r J+ Re f {2& - r\) d Q L 

Suppose now that u ( C ) = v ( r  ) outside sonne open bounded 

set n.   (u.  v<7).   Then from (5) 

(6) T [u]- T[V]= D[G|n]-»D[v|n] 

In particular,  if u = 0 for zt^' and v = u on E - 0,   then 

(7) T [v] = T[u}f D[0|rj, 

or by (4) 

(8) T [v] = D[v - ^ | E - r ]+ D [0 | - ] + mes Ü . 

If v.(z), v (z) denote the positive and negative parts of v(z) respect- 

ively, and Pis the set where v(C)> 0 then (7) and (8) can be given the 

form 

T[v]=T[v+]+ D[v_]=D[v+-ri|p] + D[v_]+ me8(E-P) 
A * 

This identity remains true even if Q = E-P is not bounded but 

has finite area.    In fact,  we can find a sequence of functions   v    r,   such 

that v = v in P, v = 0 in Q-Cl    where 0      is an open bounded subset of Q 
n rv n n r 

and the sequence |v    .l approximates v in the Dirichlet-norm over Q 
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A 
Then ( 8) holds for each pair (v   ,   ";.),   hence in the limit for (v , Q ). 

Suppose that ^=E is the halfplane y > 0 and the function ; is 

harmonic over its support A - O,   and O is a domain bounded away from 

oo.   Then for open flows 

(9) T [^]  =ra. 

where a is the mass-coefficient defined in (2). 

An analogous result holds for channel flows.    Suppose that   - = E, 

| 67.   and   | is harmonic in its support   A - fj,  and fl is a set bounded 

away from p*  and from infinity.   Then 

i|( = Im (z + k ) + O (e '   X   ) as)x(-+ oo, 

and we find easily by Green' s identity 

(10) T[^]= ry  Re ( k+-k_) . 

1.3   Variation of T Ui\,    We will derive a further identity expressing 

the variation T [ty]    - T f l] for functions f, f   in    harmonic over their 

supports D, D      respectively.    First let E denote the halfplane n > 0.    We 

* assume that D,   D    contain the outside of some half-circle   C  ^I'l^1"'   ■? > 0 | 

Then f,   f    are imaginary parts of analytic functions 9 ( b),   9     ( ' ) respec- 

tively.    By reflection 9  (z),  9   (z) can be extended into the n <0 halfplane. 

Then   9 (z),   Q   (z) have first order poles Li infinity: 

I9  (C) = C"t"c+T + '   •   • 

*      % *    Q* 
9 (r) = r+c+T- + . . . 

' 
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(c, c*  real)    .    By Green's identity 

*_ A* ^ 
DOD OC ^D ^C r r 

r A   a* • n an       * 
7 • TTT 

d8+T r +-r (a -a) + 0 

ds 

9 

Interchanging t  and •     yields 

(3) rr   •       *• l    ~*   dt TT     2      TT * _,; 
//V| 7 t   d^dt! =/    t^-d8+-2-r    .T(a,!t-*)+0(r    ). 

DnD*ncr 5D* 

•'A     ^r d8"    i v "^r d8 = n <a -a)- 

Subtracting the identities (2),   (3),   we get 

4 '  TIT d8-    i 

Therefore,   by (1. 2. 9) 
r A    " 
I     *     TIT ds- 

d D* 

store,   by (I.Z. 9) 

ds, 
A. 

T[-*]-T[,>-2i|/%4d--   /   ?4* 

This identity is clearly invariant to confcrmal mappings,   hence 

(4, TM-T[v]=-2ij/'^d../,Jl.*d2j 
.D* 

It can be shown similarly that ( 4 ) is valid for channel flows as well. 

21 



(1.4) 

1.4   Minim um-Problem 8.     We introduce the functionals A [ul    the 

area of the domain   N [u] ;    (u = u (z) re^l): 

A [u]= I /  dxdy, 

u< 0 

and 

u (z) dx dy. L[a]=    -    iff 

The quantity L ( u  ) has an interesting physical meaning.    A 

simple computation shows that if 7   ^ = ^ in NMJ,   then L[' -Jis the 

angular momentum of the flow in N[«J. 

We will also use the notation 

L[u |  S]= - 2\\n (z) dxdy 

S 

where S is an open domain. 

Definition.   The dasses of all continuous functions u (z),   such that 

L [u. ] = m will be denoted as ..^{mKand the class for which A [u]= b 

as/3(b). 

We will also use the notations 

^(b)   X   (m) «A, (b-m) = Öj * 

^(b) ^„(b)       3öII 

^(m) ^(m)     ■tfIn        * 

Minimum problem I.    Find a function •   cü. (b, m),   such that for any 

). 

T M<   T [uj. 

u ±ai (b.m), 

Here the notation _ u v ■ uriv 
was used.     ( U,   V   are arbitrary classes of functions) 

11 
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A weaker version of this problem only requires 

6 T[u] = 0 if u = *, ( uGÖj) 

or more precisely, 

j T  ^ + 9VJ(9=0     =0 

for all v = v (z),  for which t + "^vCöfor all sufficiently small values 

of   |9|.    (Variational problem I,   to be distinguished in the future from 

minimum-problem I. ) 

If we introduce suitable Lagrange multipliers,  other equivalent 

variational problems arise: 

II. 6U   [u] =   6| T [u] - JJL[U.]|= 0 

if    uey/Kbj ; 

III. 6 V   [u] ■ {6 T [u] -   X A [u] | =0 

IV. 6W[u]=    6|T[u]-    JUL [u] - \ A [u]|= 0 

if   u € ^     . 

To each variational problem we can formulate a corresponding 

minimum-problem.    We cannot expect however    these minimum- 

problems to be equivalent to each other. 

There is an equivalent formulation of nninimum-problem III. 

Given any function u (z) £ J,   we set 

u (z)   if u (z) > 0 

u    (z)    = { u (z)        .,      ,   v     „ 1      I ""Trp:] if u (z) "0- 

z^ 
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Then u    (z) - 3J?(m).    Thus III is equivalent to III1   : 

Functional minimized: 

V   [u]=   T [u,]   -   ^ A[u] 

=   T [u+] +   ma    D [u .]/L [u .]3- \   A [^ . 

where in the second equation the identity (1.2.7) was used. 

Constraints:   None. 

Given Data:     m,   ^ 

Competing functions:   7 , 

An  equivalent version of I    can be formulated similarly.   (See 

Table I. ) 

Min. 
Problem 

Functional 
Minimized Constraints 

Parameters 
Given 

Space of 
Admissible Functicns 

I T[u] L [u]= m, A[u]=b m , b ni (m.b) 
s7/(rr)/J(b) 

I' T'[u]=T[uJ 
+m,D[a-]/L[u-]3 

A[u]=b m, b ÖfJ(b) *au (b) 
^^(b) 

II U [u]- T[u]-x L [U.J A[u]=b x, b an M 

IU V [u]= T[u]- i   A[u] L [u] =   m m, V Oj! (m) =7./(m) 

III' V   luj= T'  [u]-V A|_uJ -- m, X «in -aiv-3 

IV W[u]= T[.i]^A[u]-xL[uj| 
i 

w.X rtiv -' 
1  1  J 

Table   I. 

24 



I (1.5) 

1. 5   Lower Bounds of the functionals T, U, V, W.   First step in solving 

any of the minimum-problems I-IV is of course to establish the existence 

of a lower bound of the functionals,   the minimum of which is asked for. 

For all u   £, $  ,   T[u3 > 0 by definition.    To find a lower bound 

for U[u|,   u £ 0.. ( x, b),   we first have to prove a 

Faber-Krahn-type inequality.    Let u (z) be a function such that 

u has a finite Dirichlet-integral and its support S has a finite area A   . 

Then 

(1) a [uj-   Ag    D [u]/ L(uf >   2", 

where 

K L[u]« - 2    f/u (z) dxdy. 

Equality holds if and only if S is a circle and u satisfies there 

7 u = const,  in S, 

u continuous everywhere,   i. e. 

u = Kmax ( 1-lz-z I3  ,   0) o 

where *• is a real constant,   z    fixed. o 

For,   it is clear that Schwarz symmetrization of the function u (z) 

around z    leaves L^rjand A„ invariant.    On the other hand it is known 

that (see Polya -Szego 1951) Schwarz-symmetrization decreases the 

Dirichlet integral of ,;,, hence the   result. 

By the inequality (1) 

U [u] >   D [U_]-JU  L [u.] 

ZTTLIU-I TTT III       A  r t3 JU, 

-   AKT    '     W ^ - f^ A fu3 = -Tn7 b 2 
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Hen«, j  U [ujhas a lower bound i>r u c fl .. dependent only on b and 

*,    This also implies that V [u] and W [u]always have lower bounds 

dependent on ( x, m) or ( \, JU ) only if the area of A is finite. 

We will show now that W is unbounded from below and hence 

IV has no solution for open flows if   f   ( O-.! as |n -.00.    Let us 

define for r > 0 the functions u    (z) = u    (^).    We set £,= (*- 2r, 

I m[r -2r+4r8/{ C - 2r)] in P = j ': | :-2r|> 2r,  r] > 0\ 

ur(')«j-J-[K- U+i)r|3- ^^N =|C:K- (2+i)r( <r| 

0 in 6 = E - f» - N. 

Clearly u   (z)t7.    In fact by (1. 2. 7) 
A       A 

T [u  ] = 4 TT   r*   + D[url N]= (TT/16) UU
3
 r3 + 4 TT r

a. 

Further 

L[(ur).]   >  Mr   ITS (C ) d ?dn= (TT/8)Mr our* 

^ 
where 

Mr= inf ||f' (r))3: |C - (2+i)rJ <r| 

and similarly 

A   [uj _<. TT Mr   ra. 

Hence 

W Lur]   <    (TT/16) uu3 ra(l-2Mr) + (4.x) n ra . 

With r-.oo,  Mr -1,    hence W [u ] - -oo. 

Zh 
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We will investigate now the existence of lower bounds for 

v M . W [uj in general.    As before,   we will use the nobtions 

a = lim      f'KC )| 

and 
A = 1/Q3. 

In addition we set 

X = aa \ = VA. 

We will consider only \ > 0,   i. e. ,   X > 0. 

Definition.   We will say that a mininium problem III or IV is well- 

posed,   if for any set SC^TTT (m) oröTV in which V [uj ,  W [uj 

respectively are bounded,    A [ujis bounded uniformly for u c S. 

Proposition.   If III is wellposed,   then T f^lhas an upper bound for 

ty e S dependent on sup Vf^Jalone.     Obvious. 

If IV is wellposed,  then T[;'Jhas an upper bound for iji e S,   dependent 

on sup W[t] alone. In fact,   if A^-B and WM^-Qfor iji e S,   (A5A [üi] ) 

D [|_J -uu L [q < u[t]= W[^]+ x A <  f. + B, 

where B is dependent on ^ alone since problem IV was assumed well- 

posed.    Therefore by (1. 5. 1) 

2 TT (L [t_] /B)
3
 - JU L rq£ n+ B. 

This inequality implies that 

L W<   ^- [^ + |u;a+ Sn (n + B) /B8 [  1/23. 
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hence from   T [t]   = V [♦]   + ij L [♦ -]     . 

T[0<n*B+   ■£- Ba [.+|«-  +8ni^- I U2] 

1. 6   Theorem on the existence of lower bounds for V [uj , W [uj . 

(a) For both open and channel flows,   it is necessary for the existence 

of a lower bound for V [ujover"      (m) that X <    1,   and it is sufficient that 

X < 1. 

(b) For open flows w[u] has no lower bound overfl-v   =   7    (at 

least if a > 0 aa postulated) 

(c) For channel flows,   it is necessary for the existence of a lower 

bound of W [u] over flTV. that 

(1) X£ 1 and Y <   $ (X). 

and it is sufficient that 

(2) X < 1 and Y<   * (X), 

where   Y = $ (X) represents the envelope of the family of straight lines 

(3) X + Pa Y = -jL-   ,     -^   < P < -^ . 

(See the figure) 

(d) If X < 1,   then problem III is wellposed.    Similarly,  if in (c) 

the strict inequalities (2) hold,   then IV is wellposed. 

Proof.     We will prove (a),(c),(d) only for channel flows,  since th* proof 

for open flows is entirely similar,    (b) was already proven,  hence it will 

be sufficient to examine V [♦] and W [f ] only for channel flows.    Let us first 

establish sufficient conditions for the existence of lower bounds. 

« 
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Y.-L  Jü! 
I27r2   A2 
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(i)   We introduce the functionja» 
ZTT 

- u i w a 

T,   [u]=   ^[u-r^ T[u] 

and the function H - H ( » ) the meaeure of the support of u. (? +i ") 

for 1 > 0,  fixed S«    We find by application of a trivial modification of 

^ 2.6),  (1.2.7). 

(4) Til»*]-/'     (T|  ^f   d^n.AA   . 

(5) ^[«J-   T, [uj+ f   (-li-)3 <*?  dT1«  ^[u+J + D^u.]. 
^ A 

N 

Let us reflect u on the real axis, and apply subsequent Steiner-s>..i- 

metrisation relative to the real axis.    It is known that the integral 

(6,JPlir"8i8n(T1u+)J   dT1=   /  ^"■^—'J dn-^TT+H(?^ 
•« -TT 

is not increased by Steiner-symmetriaation.   On the other hand,  we 

note that L [u.]and A[U] remain unchanged by it.    We may assume 

therefore that the set Q [u] and   u+   ( %, 1) are already symmetriaed, 

hence   u    (^,il) is a non-decreasing function of  (T]J   .    For such u 

by Schwarz* s inequality 

n 

/ 
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Introducing this estimate into (6) we find 

Therefore by (4) and (5) 

Hd? 

•<I> -QO -oo 

-.   Wrd' 

Given any function v(1K0 of support S of measure <   H.  the minimum of 

s 's 
is achieved if S is the interval ( 0,  H) and v =   i (H-r]) = v  .    Thus 

w[vj>   u[v0]=  U/H\ 

Applying this result to the estimation of Dj [u_]  ,   we find 

(8)       D^u.]^  U   y    )  j    u. (l + i^d-    " ^-= 3      r   .*[!£.   dl . 

-So        o -co 

where 
n 

K = K (=•)=- .i    /     u. (5+ ln)dTi. 
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Further 

(9) LCU.3 -.ajplfr »I'MOAld^J p(?)K (?)<*?• 

where 

p = p (?) = «up llf'  ( ?+ i T!) | : 0 < T! <   n} . 

Combination of (8) and (9) yields 

Di [UJ -«M«-] >   J (^   K»   - p*K) d» . 

The smallest value of the right hand integrand for all values of K is 

-fl/12) a)8 pa H"*.  hence 

Dl [u.^L^.J^   - -jf^    J    p(?)aH(§)a d?. <10) 

Finally m 

(11)    AQV/Y^   (C)a d? dT1 <    T   P(5>H(5)d?. 
Q -oo 

Combining (7) and (II),   (7),   (10) and (II) respectively,  we find 

{U)    VjMiT^ttJ-XAQ^ 7    (^r^   -Xp   )   Hd?. 

(i3)   wi[u]. vx[u]-OUL^.]^   J (irzw -Xp -IT-P3"*)"*?. 

If {£) is valid then we can select an X*   > X and in case of IV a   Y' > Y 

such that U) is still satisfied even in   X1   ,  Y* is substituted for X, Y. 

32 
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Since 
lim   p (f)    = Q    = 1/A , 
^ _  CD 

we can choose '    so laree that for   ? > f 
o 6 o 

and 
X P (')■    -^X'    (III and IV) 

-^ i p ( 5)8     -Y'   (IV)   . 

But then,   with H/^ = P = 0 (f),  by (2) and (3) 

/(^T-H-'-P2)  Hd^n /( 
1 

1 - p 
X' I   r d ? > 0 , 

(problem III) ,  and 

/(^H-^--!l-P2H2)Hd?>nyiU-p.x'.0Jr')0d?>0, 
'O co 

(problem IV) .    Therefore by (12)  and   (13) 

V [u]>   V, [u)> 2     t   ( 
^o 

Jo 
P )Hd 

>   "   *T §0 Au  . 
,0 

W[u]>   W, [u]>   I   f[-^   - A p   - -^- p8 rfjHd? 

> - ^ ?o (A+  -R- ^3)'iS - 

where we took into consideration 

PU)   - sup f|( :)|3 = a 

J3 
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(ii)   We show that if X> I.  or if Y > * (X),  then W[u]hai no 

lower bound.    Let h denote any number in ( O.rr)       andt any positive 

number.    Then we introduce the functions 

V(T1) = 

-( Jü/2A) ^(h-r,) if 0<Ti<h, 

irr    "^ ifh<,n<n, 

i iU<5<zt 

w(?.Jl)    3  \0 if   g<4-l,   or5>Zt + l 

linear in (4-1» t) and in (il,  ti+ 1) ; 

u(P+i^ l)= V(TI)W{5 .<, )+[l-w(?.t ) ]r] , 

and the rectangle domains 

R .«U* 21) s ( 0. h) ,    S^ = (t.Zt )x (h.n). 

further the non-negative number 

Mt=inf||fMC)la:   C€Rt|. 

If Q denotes again the domain where u ( = )=u(z) <_ 0,   AQ its area, 

then obviously 

(14) h <AQ   <   h+Z". 

A simple calculation shows that constants C1 ,   C3 independent of I 

and h exist such that 

h2 
(15) TCuJ-A^Dtv-nls^l + Cj • Ä-h t + C, 

(16) D[UJ<D[V|R/]   + c2  - JiL-   h3/ +C2 

12A2 
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and that 

(17) L[u.] > " ^     /T   v( ^d^dn ^ilh5^ 

(18) ACu]^j|f'(C)|2d?dn >Mth . 

N 
Combining Eqs.   (15),   (16),   (17),   (18) we find 

(19) 

V[u]=   T[u+] +   D[u.] -X A[u] 

<( 
12A'' 

—^   - \M^h)t + C3 

(^0) 

W [u] =   V[u]-ajL[u.] 

( 
x" 

12A' 
h8 + J4. 

TT-n TTT  M^hJ -XMth)t+C, , 

( C3 independent of h and * ).    Since 

Urn   llMOl' = aa=  1/A. 

uniformly in 0  -    r] < TT ,   to any number c •> 0 we can find an  t such that 

M 1 > ——   + € . 

We substitute this inequality into (19),   and get 
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and ■imüai-ly 

(22) W[u]<h[-r}r7-.   .X-/A\3Y]^C    +C4ct. 

Clearty V [ul has no lower bound if X > 1,   fince we can chooie then a 

positive h,   such that in (21) the last expression in brackets becomes 

negative,  then fixing h,   for ^"•OD, V [u]-. - oo.    Similarly,  if X > 1 or 

Y > f (X),  then there exists a value of h such that in (22) the expression 

in brackets is negative.    Then clearly W [ul- - oo ast -•+ co. 

This completes the proof of parts (a),   (b),   (c) of the theorem. 

Statement (d) is a consequence    of (11).   (12),   (13).    In fact,  we 

can write (II) in the form 

<  aZJ       Hi Cm AQ<   a   /        H(')d' 

By hypothesis numbers   X  >X .   Y  >Y can be found which still satisfy 

(2),   i. e. .  such that 

(23/UI) 1 - X   « a>0 

and 

(23/IV) inf   -[-—     -X/-p2Y/}=     b>0 
0<p<1     "p 

2 
respectively .   Taking into consideration that p(?)-'a    as ?-«00, we find 

from (12) and (13) that a finite C exists such that 

1- 
V[V^/       H(?) [   1 ■ Hm/TT    -^Jd^-C 

+ • 
wW2/_H(?)[TT1^-x'(-aa) r]*t.c. 

a 



(1.6) 

Introducing inequalities (23) and (11') into these inequalities,   we find 

A   <jvru] + C| a2/a (III) 

AQ< j W[u]   + C|a2/b (IV) 

from which the statement (d) follows. 

Remark.     From the contents of this chapter it is clear that these min- 

imum-problems are not equivalent.    However,  any solution of a well- 

posed IV is also a solution of I, II, III,  with suitably chosen parameters 

(m = 0,   b = 0 must be included).    Any solution of a well-posed III or a 

problem II is also a solution of a problem I. 

We will further consider only Eland IV,   since attempts to show 

that N has a rectifiable boundary were unsuccessful for I, II. 

When we speak about III or IV, we  will always mean a well-posed 

minimum-problem III or IV. 

Well-posed problems may be characterized equivalently by re- 

placing the condition of boundedness of A [u] by a condition that T [u] be 

bounded for all function u(z) for which V [u] and W [u]  respectively are 

bounded.    In fact,  by (1, 2.4) 

TLu] =   iTu] > Afu]     , 

and since it was assumed that  \i' (C)|  has the upper bound u .   this implies 

(24)   A[u]=   jjV C)   3 d ?dTi<u2    /VdC dn< u
2T[u]. 

Q[n] Q[u] 
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PART n 

CONVERGENCE OF THE MINIMIZING SEQUENCE 

Z. 1 Definitions 

Jk  is the family of non-negative continuous functions harmonic in 

their supports.   J*    is the family of non-positive continuous functions  u 

which satisfy 

7    u = u) 

in their supports with any constant JU > 0. 

ß is the set of all continuous functions u(z),   such that 

u+(z) -  max (u(z), 0) C U+ , 

u_(z) = min (u(z), 0) € ^_ 

.7(j) is the set of all functions u(z) in .7,  such that T[u] < j. 

•7p   is the set of all functions in 7 having subsets of P as their support« 

D  is the Dirichlet-norm closure of the set of all functions which have 

finite Dirichlet-integrals. 

^N   is the set of all functions in J) having subsets of N as their 

supports. 

i:    the set of functions  ^{z) = H? + i'n) even in ?,   and decreasing 

functions of  \'\   in E. 

A relationship betwesn D[u],  L[u]   and x.  Suppose that ue ß J). 

Then by Green's theorem applied to u in the domain N    = , z • u(z)< - ej (e > 0) 
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D [u IN 1 ■ J J    (V u )2 d x dy = j    u ^ ds - J >   u 7   u dx dy 

N dN N 
c e e 

|^d8-i)J       udxdy = -GjJ      V2u dxdy+ (Jü/2)L[U IN, J 

N N N 

A(N ) +(J)/2) L[U | N  ]   . --c*-  -e 

Letting e   "^O,   we find that for any u€^_ -P. 

(1) 2 D [u] = i) L [u]   . 

2.2   Elements of J (j^J^m) and oP'y (j)^Ö     {i') are equicontinuous . 

Proof.    It is sufficient to show that there are positive increasing 

functions   «p (d),   ^ (d)  such that *p (d) - 0,  *N (d) - 0,   and dependent only 

on the parameters j , m or j,(jj besides  d,   for wnxcn 

(1) 1 u(z) -u(t) |   < «p( | z-t | ) 

if   z e P [u],   te   P [u]  ; 

(2) I u U) - u (t) |   < *N ( 1 z - t 1 ) 

if z e  N [u],    te   N La] . 

It is sufficient to consider only   | z - t | = d < 1. 

Case  a.     By a well known lemma used in the theory of the Dirichlet- 

problem,  to any i-t > 1,   there is a circle C=z:   |z-t|<ojf   d<r<ad, 

such that on any two points p, q  of äC 
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. 2TT D [u|c: s* 

(3) lu(p)-u(,)ll   [      logu        )     ■ 

,3, remains valid even if u is r.piac.d by u+U).   or .quival.nüy, if C  is 

„plac.a in (3) by C = CD PU-   ". estimate now the riband Diricblet 

integral in (3). 

Dtu-y I CM, = D[u I C ] - 2D[u.y 1 C'l + D[y | C]. 

Here 

However, if C e  P = g (p) • 

u (C)<T1 

because of the maximum principle of harmonic functions.    Thus 

D[u|C/]=DLulC/]=D[ü-.lc'] + A(C') 

<TCu3+p2n««ll'(»>l2li^2A d2TT- 

We substitute this and a = d"    into (3) : 

UP) - uU)  11   (^iW)   ^-"•pW 

for any p.q  e 5C'.    By the maximum principle the same estimate remains 

valid if p is replaced by any  I   in C  and q by t. 

Case^  With the same meaning of C  as before.   C  can be replaced 

in (3) by C - CO NUL    From (3) we deduce,  considering also 

DLu Ic'llTLuJlJ,   (a consequence of Eq .  (1.2.7)). 
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,4) |u'(p).u'(q)|<(^lJ_f+ «^a2. 

$ 111? ''; " 
where u (z) = u(z) - -j |z-t| .    The function u (z)  is harmonic in C , 

therefore by the maximum principle (4) is valid if p, q are replaced by t, z 

respectively,   z an arbitrary point in C .  Hence,  returning to the function 

u(z), we find 

We substitute now u = d    ,   ( d < 1 was assumed) into (5),  and find 

(6) luUl-uWll^J^)   +^dS «N(d)  . 

If u e    7(j)ilJ'(m),      then by (2.1.1) ■ can be replaced in (6'; by 2j/m. 

Corollary.    Elements of the spaces 7{j)ß ^(m)    and of 

7(j)^ fl     (•) have a common lower bound. 

2. 3.   The restricted minimum-problems. 

Suppose that the sets P, O, N are specified,   such that a i|i    e «7 

exists for which PU  3 ■ P,   Net.] = N, OCf03 =0.    P and N are deter- 

mined uniquely by O. 

The set of all functions ufe?   for which 

u > 0    in P, 

u = 0     in O, 

and u < 0     in N, 

form a subset '7° C 7.    We define the restricted minimum-problems III' 

and IV: 
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Find V € 7° such that for any u 6 7° 

v'Cu] > v'U]  , (m') 

W[u]   > WCf] (IV) 

We define the class 3-C.30 of functions v > 0 of support P.    Let 

^j. denote the closure of the space of continuous differentiable non-positive 

functions with support N.    The restricted minimum-problem splits into the 

following two problems: 

A) Outer minimum-problem 

Find t.(>)67p such that for any u€2p, 

TCU] > TU+] , 

B) Inner minimum-problem 

Find Mz)e *»N,   such that for any v € iN, 

DM    > DCO , 
LCv^-Tnrp 

or 

D[v] - UüLCV]  > DCt|(   ]   -  u)LCi|(   ] (IV) 

Because of (1. 2. 7) it is clear that tht function w(z) = I|I+(Z) + w_(z)  is a 

solution of the restricted minimum-problem. 

2. 4   The solution of the outer minimum problem 

We first consider the case that P = g(P) is bounded by a finite number 

of Jordan-arcs. Let t  (0 be the solution of the Dirichlet-problem for 
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p with the boundary value assignment 

**(C)  = -  Tl 

on ÖP,  ii    bounded in P.    We set then f.(C) ■ ♦ (0 + n«    B u(z)  is an 

arbitrary element of   7p,   then by elementary identities 

DLu*] =D[i*J+D[**-u*] , 

or 

(1) T[u]   =   T[*+]   +DL u- tJ , 

Thus  f.   is the solution of the outer minimum-problem,  as shown by 

Polya (1947), 
The more general case is that P is any open domain in E.the class 

7p is not empty.    We approximate P by increasing connected open domains 

P      each of which is bounded by Jordan-curves: 

P1cP2e... ^Pfc^Pk-n01--- c-P=UPk. 

By the maximum-principle the corresponding harmonic function \  (z)  are 

monotonic domain-functions.    For fixed z,   y > 0, 

JjU) < tyo <... iVc)<n, 

hence by Harnack's second theorem they converge to a function f .(C) 

harmonic in P.    The functions  |  (z)  are equicontinuous in P because of 

lemma 2. 2,hence   ^.(z)   is also continuous in P,   and vanishes on dP.    Let 

u(z) denote any function in 7     .     Then u(z)  cam be approximated in the 

Dirichlet-norm by a sequence u (z) e J7    .     By Eq. (1) then n p 

(2) 
TU^ = TUJ + D[un - *n] • 

By the definition of the functions un, 

lim -  _ 
n-» n 

D[u_ - U]   =0. 
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From the last equation by the triangle inequality of Dirichlet-integrals 

(3) lim     T[u J  =  TCu] . 
r. ^ - n 

Furthermore by the lower BCmi-continuity of the Dirichlet-integral 

(5) tim     TUnJ>TU],        tim   D[un-*n] > D[u - ^ J . 

Combining (3).  (4),  (5) 

T[u] >T[^] + DCu - ♦] >T[^] 

if uM. 

We observe first that by the maximum principle 

Mz) >0       if       z € 5 

and therefore the same inequality applies to  |  in P[\|i].    By the maximum- 

principle therefore 

(4) Mz) > 0      if      z e P . 

Second,   if *   is the solution of the outer problem, then by the uniqueness of 

the solution of Dirichlet's problem  T[I|I]  depends on the domain P    alone, 

and may be considered a domain functional,- say, 

TU] = inf |T[u]:   u e   7p} =  TCP] . 

T[P]  is a decreasing domain functional.    For,  if P.CP  is an admissible 

outer domain,  i.e.,  it is open and the class     »p    is not empty, then 
1 

•'_     C     7-p,   imolying that 
rl 

TCPJ] = inf {TCU] : ue    7p j > Jaf |TLu] : ue     7p} = T[P] . 
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Z, 5 Solution of the restricted inner minimum-problems. 

First assume again that  N  is a bounded open set bounded by a 

finite number of Jordan-curves.    We will prove the following lemma: 

(i) For such N there is a function Y(z) which satisfies 

(1) V2 Y = 1        Ue N) 

and 

(2) Y is continuous and vanishes on äN . 

(11)         Let  ^m =(m/LCY])Y(z),   »jy > « T(B) 

Then for any ue   D     -^(m),   ve   -ft.   , 

(3) D[u]   = DCtm]  + D[u- tjjj]   , 

(4) D[v]  - JULCV]   = DCtjy] - üt)LUIV]  + D[v - i^] , 

hence i|r       ,  | are solutions of the inner problems III, IV respectively. 

Proof.   Let z    denote a fixed complex number,   f (z) the solution of the 

Dirichlet problem for N with the boundary value assignment 

,*/  v /, /.. I |2 

We set 

Then indeed 

Y  (z)   = -  (1/4)  |   z - z   r   if   zeSN. 

Y(z)     =     Y (z) + (1/4)  | z - zj2   in   N. 

(5) V2 Y   =  1 

and Y is continuous and vanishes on äN.    For any function w( :) e^N , and 

real a, 

(6) D[w] = DCaYj + DCw-aY] + ZDCaY, w-aYj 
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Here by Green's identity and by (5) 

2DCaY, w .aY]= 2a J    ( w-aY) |^ da - 2a Jj (w-aY) v2 Y dx dy 

dN N 

= a(L[w] - LCaY]). 

If we set now w = u,   a = m/LCY],aY = ^.j. ,then because of LCu] = m, 

2D[^m ,u- tm]   = 0 , 

hence substituting the last identity into (6) yields (3).    On the other hand,  the 

substitutions w = v,   ft ■ V,   aY = f-y lead similarly to (4). 

We show now that the statement of the lemma is true even if N is any 

open set of finite area. Then we approximate  N by increasing bounded 

open sets bounded by finite numbers of Jordan-curves: 

N. C N.C ...   CN =   U   N   . 12 v5l      v 

Let z    be any point in N.    The distance d.   of z    from N,   is less than the 

distance d from N.   Hence,  and because of the inequality (2. 2. 2),  the 

functions  f     are uniformly  bounded.    The functions v 7 

'  (z) = Y  (z) -4 1 z - z    |2 

V v 4 o 

are harmonic.    They form a decreasing sequence for any z e N,   The proof 

of this property is the same as for the analogous outer problem.    The 

functions  1.   have a common lower bound.    Therefore by Harnack's second 

theorem they have a pointwise limit Y (z) harmonic in N.    The function 

Y(z)  =  Y*(z) +   |z-zo|
2/4 

will therefore satisfy (1).    The functions   Y (z)  are equicontinuous in N cf. 

lemma 2. 2,  thus   Y is continuous there and vanishes on   -N.    Furthermore 

4 b 
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(7) I    = L[f  ]  - LlY]  = I , n n 

and because of the lower semicontinuity of the Dirichlet-integral, 

(8) D[Y]  < Urn D[Yn] . 
n-.oo 

Thus,   setting   \lf  (z)  = (m/1 ) V  (z) 

(9) *  (z) - {mfl) Hz)  ■  ♦m(«)  • v xir 

uniformly in N,   iiiTTT is continuous and vanishes on 5N,   and from (7),   ^8) HI 

LC^m]  = m,   D[^m]  < lim   D[*  ] . 
^   <« 

The functions   v   (z)  = (m/A  ) Y  (z)   satisfy (3) if we replace there  N by N . 

Thus 

(10) D[u  ]   = DC*   ]   + D[u    - ♦  ] . 
V V V V 

Suppose that u C JD^,   -^(m) = flN(m).    Then we can approximate  u by a 

sequence  u    C Ö.. (m)  in the Dirichlet-norm so that 
V IN V V 

(11) D[uv- u | N] - 0,    DCuv]-DCu]. 

Hence indeed by (9),  (10) and (11) 

DUm]   < D[u]   -  D[u - ^m]  < D[u] , 

unless  u =  ^j,,   • 

The corresponding proof for problem IV differs only in trivial 

details. 

We observe that the maximum - principle associated with the equa- 

tion (1) implies that for all n 
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*  (z) < 0   if    z e N n n 

and therefore 

*(■) < 0    if   z e N . 

Hence again by the maximum - principle 

(12) Hz)  < 0    if    z e N . 

2. 6.    Estimates on the vertical spreading of the domain Q[u3 .    (Open flows) 

If P = ^ - Q is simply connected then it is known that the image Q=g(Q) 

has finite height if T  [Q] = T[P] is bounded (cf.   Garabedian-Spencer (1952) 

p.  382).    This is, however,  not necessarily true if P is not simply connected. 

Unfortunately we have to admit as admissible domains   Q  any closed subsets 

of A.    The measure of the subset Q,   ="jC'CeQ»   'n>hj' can be expected 

nevertheless to tend to zero as h "• ^ for any closed QC A, if T LQ]  is finite. 

We will estimate,  therefore,  the minimum of  Tr[Q]  if 

me • Q. ■ A. > 0. \> 

T'CQ] will not increase if QCf]  is replaced by Q, ,   because  i|;  is an admis- 

sible function for the minimum-problem of the funciionai    T  in the domain 

E - Q  .      It can be also assumed that Q,    is symmetric to the imaginary axis, 

since Steiner-symmetrization will not increase   TC>lf]   ,   and leaves  mes Q. 

unchanged.    The value of T '   is further reduced (or not increased) by replacing 

Q.   by its intersection R with the imaginary axis,  because of the monotonic 

dependence of 7 on the domain, hence the inequality 

(1) T'CQ] > T'CR] . 

♦ cf.   PoVa-Szego'dgSl). 
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On the other hand,   suppose that (after symmetrization)  Q,    contains a 

horizontal segment I = (ik - a/2,   ik + a/2),  (k > h).     Then similarly 

(2) I'LQ]  >  T'[I] . 

We will estimate now ^  LR]   and   T  [l] . 

(a)   If   . Jz)  is the solution of the outer problem in E-I,   i'    = ii. 

then by Schwarz1 s inequality 

- n, 

\&-)*'>-b*\-*- 
Hence 

a/2        TT        ^z 

(3)    T'O^J      d?J   g^L)    d->ka>ha. 
-a/2 o 

(b)   Similarly,  if '^(C)  is the solution of the outer problem of R, 

^(0 = ?2(C) - i and  C = r ei9,   <f*(C) = **(rre),   then 

n/2       , /TT/2 \2 

« (ir)' = 
2    2 

TT1    • 

Hence,  let S denote the set obtained by rotating  R  around the origin.    Then 

using the estimate (4), 

or 

(5) T-LQ;] >ihb 

where  b  is the linear measure of R.    From (1),   (2),   (3),   and (5) 
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T'CQ]2 >lh2ab. 

If "mes " denotes linear measure, then 
1 

a b = a mes.   R > mes Q,   = A. . 

Thus we find for open flows 

(6) T[u]2 > T'CQ]2 > (4/TT)h2 ^ . 

2. 7.    An all-important point in the proof of the existence ofa solution of the 

minimum problems will be to show that if -^   |  is a sequence of admissible 

functions it is not possible that t (z) - 0 in all fixed finite domains.    This will n 

be achieved by lemma 2. 8,  which will essentially state that if Dirichlet - 

integral and the area of support of a function vanishing on the real axis are 

finite, then the function values in a strip adjoining the real axis are in a 

sense lumpy.    For the proof we first need an inequality of the type (1. 4.1), 

but with milder assumptions. 

Lemma 2. 7.   Assume that the function u(z)  defined over the rectangle 

R  = {0,s)x (O.h) 

vanirhes on the lines  y = 0,   y = h,   is continuous and has a finite support 

area A and its Dirichlet integral D = DCU]  is finite.    Then D,   A and L = LCU! 

satisfy the inequality 

(1) L < {8/TT)* (1 +h/TT8)  AEf 

Proof. We write 

u(z)  = v(z) + w(z),     v(z)  = (x/s) u(z). 
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By Schwarz's   inequality 

(2)        D[v] = (l/s2) \ JJ x2 (7u)2 dx dy + 2 Jj x u |^ dx dy 

+ JJ u2 dx dy| 

< {DCU]^ + (l/s)  ( JJ   u2dxdy)    }    . 

On the other hand 
h h 

"J-1* < liUhv 
0 O 

where k = (n/h)    is the smallest eigenvalue of the vibrating string of 

length h.    Substituting this into (2) yields 

(3) D[v] < (1 +h/TTs)2 D[u] . 

Let us continue v(z)  into the rectangle 

R*  = (s,   2s)  x (0,h) 

by reflection on the  line  x = s.    Then v is vanishing on the boundary of 

the domain d consisting of the support of u and its mirror - image on the 

line  x = s.    d has area 2a.    Hence by the inequality (1. 4.1) and by (3) and 

(4) 

1 L[v]  |   < (2/TT)^ (1 + h/TTs) AD^ 

and similarly 

1   L[w]   |    <  (2/TT)^(l + h/TT8) AD^ . 

Adding these inequalities yields 

| L[u] |   < 2(2/TT)^ (1 + h/ns) AD^ , 

which is equivalent to (1). 

2. 8.    Lemma.   Let I   denote any interval of length i, H = (0,h). 
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Suppose the function u defined in the rectangle domain R = I x H haa there 

a finite Dirichiet - integral D,  vaniahea on the lines y = 0,   y = h,   and its 

support haa area A.    Then given any a,   0 < s < -t,   there ia a aubintex val 

I*CI of length exceeding s,   such that 

(1) • 
T*   ^ TT                 1                   L3 

0   (1 + Zh/TTsr    ACD 

where 

L = LCu | I x H],   L* = L[u | I* x H] . 

Proof*    Suppose that 

(n - 1) s < -t < ns 

where n is an integer > 1.    Then I can be subdivided into n parts (I.,  I,, 

..., I ) of equal length o where 

(2) s/2 <a <   s 

Lk  =  L[u | ^ x H] , 

L     = max JL^ : k = 1, ... , n| 

Dk =  D[u | ^ x H] 

and A.  th'j area of the support of u in the rectangle  Ix H.   By Lemma 2. 7 

then 

Lk < ( 8/n)* (1 + h/na) ^ Dk* * a ^ D^   . 

■ 
By Holder's inequality then 

U*2«wivswi«*(i\)w(i«ow 
k=l k=l k=l k=l 

or 

The method of this proof is due to Professor Peter D.  Lax (unpublished 
communication).    The author proved only a weaker result (which however 
is still satisfactory for the preaent purpose) and not as elegantly. 
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n n 

(3- L =:■     U    •: (!/)W y    L,,^ < (L4)"3 .» A« D1/3. 

k=l k=l 

Noting that by (2) 

a = (8/TT)^ (1 + h/TTa) > (8/TT)2(I + zh/^e) 

and introducing this inequality into (3) we get (1). 

Remarks,(i) Since the length {. does not o^.cur explicitly in (1), the 

latter remains valid even if I is ser.ii-infinite or infinite. 

(ii) The inequality (1) remains valid even if u (x + iy) is discon- 

tinuous on tlje lines  x = x,,   x2,. .. ,  x. ,   (x   < x,  < . . .  < x.   < Xj.^.!  I 

IMxoXk+1)).   ii 

I 1 
s  < min ix    -x     1;v=l,...,k + lr L  v        v-1 J 

(iii)     The requirement u(x + ih) = 0 (x real)  is not essential.    If only 

u(x) = 0 is assumed,  than by reflection on the line  y = h the inequality 

is\ T *  >  TT 1 L3 

I4' L TT T   —7~ 
~ ^  (1 + 4h/TT8)^    A^D 

;an ^    derived from the re interpretation of (1). 

2. 9 Convergence of the minimizing sequence. 

Suppose tnat the minimum problem III1 or IV is wellposed for some 

given   \  \,   and m or D  respectively.    Then there is a sequence of functions 

I     of   7,   such that: 
v 
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«nid 

V'U  / "• inf ' v'Cu] : u e 7 '^ = J... 

ffCl  ] "* inf (w Cu] : u e 7} = JIV 

respectively. 

It wJJÜ be shown that the sequence % \ contains a subsequence which 

converges pointwise to an admissible function f, whicn is the solution of the 

minimum-problem.   We also show that ty e M *■ , 

(i)       We start with the proof of the existenre of a subsequence con- 

verging to a function i(z) £ 7 M- £■    .    Steiner symmetrization with respect to 

the imaginary axis of the time   '-plane does not increase the value of the 

functionals  V'   or W.    In fact,  for any u e «ß,   Steiner-symmetrization yields 

a function u (C) £•£ ,   and N    = NCu  ].    The Dirichlet-integral is not increased 
S S 8 " 

by Steiner-symmetrization.     Hence with obvious notations 

(1) D[(U8)    -  T]]   < D[G+ - ^J , 

(2) D[(u8)_  ] < D[Äj    . 

Furthermore from 

L[UJ = - 2 JJ I f#(C) |2«(C)4S4ti  . 

N 

ACu]  = JJ   I f^C) |2d? dr, 
A 

N 

 ', R  
*   See Polya-Szego (1951) 
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it is clear that 

(3) ^V-J - L[u-J'   Atu8] - Ai-U-1 

since   |f (C)l   is a non-increasing function of ?.    Hence combining Eqs. 

(1). (2), (3) accoraing to Eq.  (1.2.7), 

(4) V'C^I < v'Cu], 

(5) W [u8J  <  W[u]. 

Now suppose that the solution of the restricted minimum-problem 

defined by the functions sets  P    = "[u  ],   N  = N[u  1  is the function 7 8 S 

v(z) e 7 J/ .    Then we claim that v e »• as well.    In fact,  if this were not 

true, then symmetrization to the imaginary C - axis would reduce the 

values of the functionals  V   and W,   leaving the already symmetrized 

domains  P  ,  N    unchanged.    But this would contradict the assumption that 
-!: 'fi 

v(C) is a solution of the restricted minimum-problem defined by P    and N  . 

Therefore by (4),  (5) 

v'Cv] < v'CuJ . 

w M < w [u] 

where v c 3 ß£■.    It is no restriction of generality therefore to assume that 

ill     c 
n 

7UZ 

to begin with. 

The supremum of the values   T[ili   ]   depends by the remark in Section n 

1. 6 only on the supremum of the values  V  [\1(   ],   WL4   ]   respectively.    There- n n 

fore there is a positive j,   such that 

TUJ  < j    (n = 1.2....) 
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Hence the sequence -U jmeete the requirements of 2. 2, consequently the 

functions  ty (Q) are equicontinuous.    By Arzela's theorem therefore, they 

contain a subsequence converging to a continuous  'li(C).    Since each v (z) 

belongs toi, so does  if(z).    We maintain that ^(z) t ß.    Let Ct^^Cf}* 

Since P[iif]  is open,   Cj has a neighborhood 0    ■ {C t | C • Ctl <t } 

in PLi^J.    Suppose that 

HQ) > 6(c)       in a    . — e 

Then, because of the equicontinuity of the functions   \|(   ,   there is an integer 

♦JO  > tHc)    in a    , 

v    such that o 

and therefore 

a    e P[\l(   ]      for      v > w   . 
c v —    o 

Then by the theory of normal families,   i|((C)  is harmonic in ^e   .    Since  C, 

was arbitrary,   \|((C)  is harmonic everywhere in PL\|i].    If C, e N[f ]  together 

with a neighborhood 0    as above,  then similarly t  CN[^  ] for \<>Vji   and 

t  (z)  satisfies v 

V2 i (z)  =   o      in    f(a ) = T    . 
v v e c 

In case of IV,   uu    = UJ.    In case of III' 

■    = (2/m) D[^]  <(2/m)  max XC» ]  < 2j/m . 

We can select therefore a subsequence such that 

it)      - (U . 
vk 

Again only the subsequence is kept,  and v      relabeled  'L.     The functions 
\ k 

♦ *(z)  -  ♦^z) - (uüv/2)y2 
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are harmonic and uniformly bounded in 0   ,   and therefore again 

» *(■! - **(z)   =  ^(z) - (iu/2) y2 

uniformly in 9   ,   and |  (z)  is harmonic there.    Therefore the function  v(z) 

will satisfy 

7' t(z)   = uj 

in 3   ,   consequently everywhere in NlfJt    By the lower semicontinuity of 

the Dirichlet-integral 

D[J+ - "J 1 üm D (*n)+ ■ ^ 
n-« 

r i 
D[$_J <_tirn   D   (JJ   I 

Combining these inequalities and considering Eq.  (1.2.7)lwe find 

(7) TU]   < Urn   T[t   ] 

which implies of course that  ^ e 7. 

(ii)       We show that 

(9) amlj(*jj=L[t] 

If Q  is any bounded open domain then certainly 

(0.1n^L[*-ln] 
because of the uniform convergence   \|(    ^ 1(1  in C.    Let us choose a fixed 

h > 0 (for channel flows we choose h = TT),  and for arbitrary p, q  (p < q) 

introduce  R" = f(R") where R^  is the rectangular domain 
P P P 

RjJ  = (p.q)  x (0,h) . 
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Then (10) is valid for  n = R*1 .  We show next that it remains valid even if 

n s R „ = S. , (which is unbounded).    First it will be shown that for the 

elements  I    of the minimum-sequence 
n 

(ID lim    tirr    LI (»If J      Ra ;  = 0. 
a-«»   n -•• 

By lemma 2. 8 (Eq.(2. 8. 4)) there is an interval (c, c   + 4h/TT) C(a,») such 

that 

(12) L * > K L3 

n    — n 

where 

(12') 

and 

r oo" « i       c  ••   4h/TT~ 

.3 K  =  n/64   j' 

In the determination of the constant K  it was taken into consideration that 

j  =  sup   XT'.   ] 

is an upper bound of both D! (A   )       and ACi-   ] . 
L.    n - J n 

Since the function  it      is symmetrized to the fl - axis,  the n 

lefthand side of (12) can only increase if  c is replaced by a  in (12 )  • 

Suppose that (11) is not true.    Then there is a number  b,    such 

that for any a >      there is a subsequence tf     [   such that 

0. > t > 0      (k = 1,2, . .. ) 

Then by (12) 

[(\).iR't4h/: > K t    . 
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The functions   *   (0 have the uniform limit HO  in R •    Therefore n a 

we must also have for any a > b,   where  b is fixed, 

{♦.   I 
a +4 h/n 

]2« t    > '). 

However,  this is impossible Tor bounded   I,If   ].    Thus (11) Is proved. 

Let e be any given positive number.    We choose then an a 

such that for  a > a 
1 

(13) 
r   ?     i     oo~' LL    ^    '   RaJ<  e- 

Then we select an a > a    and a  v  such that 

(U) llctj     1   R00 j <  e u    n - a J 

if  n > V.     (This selection is possible by (11)). Then,  fixing the value of a, 

we select an n > v such that 

(15) 
L    n - -J 

r,   a   ^   I    ^        2 

w here u = sup -j | f '(C)I  : C £E r-    This is possible by the uniform convergence 

of  Ji     to        üi   in R     .    From (13),   (14) 
n -a 

^V-   •    *-)  '  f,(C)  I2     Ra"]<  u2 € 

In combination with (15) therefore 

r 

(16) 
MJU- " ♦- ' f(sh)] 

= 1(1^(0 l2{(Jn). 'J ShJ<  3u  e 
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v here S    = R      ,    We not< that (16) is valid for any fixed h,    if only n  is 

sufficiently large.    For channel flows with the choice  h = TT,   (16) completes 

the proof of 

(i7) LT«  ) 1 - LI"*   ;. L   m - J L  - J 

In case of open flows,  we select a sequence  h    - «.    Then by Eq.   (2. 6. 6) 

l' A 

the measure A.       of the sets   *__ = i C :      (')< 0 ; 'n> h    t  converges to n mn      ^ n mj ■ 
m 

zero as m - a>,   uniformly in n.    Since the functions       (z) are uniformly 

bounded in  N[i   )•   also 
n 

Lftf J     Is      "j - 0 
L    n- mnJ 

uniformly in  n,   hence we can select m   so large that 

ILI.'*„'--;. i*«.]!*£ ■ 
or 

/i 8) |L[("n)-   -   >.   lf<J:mn,    ]| < ^ 

Thus,   selecting  h = h      in (16),  and combining with (18), 
m 

I   r, -\   \ 2 
L! (c  )    - «     I      <   4U   C  , 

•    L    n - - j   | 

which is equivalent to (17), 

(iii)   We will show that for any bounded measurable set S 

(19) Mm     mes | SOQ^'^J S mes -jSnOlJ'] / • 
n -. oo 
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Notations; 

SOQEV 3 = R ,   sOarj = R,    M  = U R .    c = 0 M . v v n      v=n     v n=1      n 

The set  p   contains all points   z C. S   suchthat       (z   ) <   0  for infinitely many 

* * 
values of  n.    For such  z     then     (z   ) <   0,    hence 

(20) p C R 

On the other hand since the nested sets   M     are bounded 
n 

mes    0    =   ^im   mes    M 
n -» n 

hence from  R   CM 
n        n 

mes   p >    tim   mes R 
n -o0 

Combining this with (20),  we get 

/im   mes   R    <  mes R , 
II-.« n " 

which is identical with (19). 

"b        f, 
(19) remains valid if   g(S)   is the strip  S     =   -U  : a <  * ' 

For channel flows this is no new statement.    For open flows we set 

^h   ■   (a.b) x  (0,h). 

Then by Eq.   (2. 6. 6) we can select  h  so large that 

mes I Q rj   10vE       - C. J   t < *,      [z    - S^ 
i n^« h/J •        a' 

h  independent of   n.     Thus by application of (19) to E 
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lim   mes [Z    f) QU   ] ) <  7i^   rnes (l   f) QCI   3 i  +  € 
_ \ ■ n.'— \h n/ n -•" n -• • 

< mes (CflOfö)  +   e <  mes (t   OorJ])  +  € 

is obtained.    Since   e  is an arbitrary positive number,   (19) is valid for 

S    = E     as well. a • 

(iv)   After these preliminaries we are now in the position to 

prove that 

V'  [#] <   fan    V' 0   ] (III') 
 n n -.» 

or 

W[il«]   <   lim     W Ct  3   . (IV) 
n n -•» 

We use the notations 

N   [u]   =   .' z : z£N[u] ;  a <  Re g(z) <  bj-, 

P    [u] ,   Q    [uj     defined analogously ; 

L^[u] = -2|J" u(Z)dxdy = - 2 j'j G_(C) | f'(C) I 2 d» dr , 

N^[u] a<?<b 

A     [u] =  mes I A - P    [u])   ■     mes Q    [u] 
a \ a        / a 

Jj I f'(C) I    d?dn ; 

u< 0;a< ?< b 

Ta [u^ = Jj (7^(C) - Tl])2d?dri 
a< l< b 
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Then with the notation a    ■ sup \ j f '(C) | : a < »  r , 

(21) a      n   -    a JJ 

2     • -•   ■ 
■if di? = ^    A     [;    1 

a    a      n 
? > a , '   < 0 

n 

By the well-'^nown semicontinuity property of the Dirichlet-integral 

(22) Ta     I>   1 <   ^im   Ta    \(j)A -a      + -a L \ n/+J 
n -« 

On the other hand, 

(23' Ta[(0+]-
>AI[Jn]  • 

This is a direct consequence of (1. 2. 8),   if applied to the function 

..(C) if     ? >a 

From (23) then by (21) 

I   (2a - C)    if     ? < a 
n 

(24) T* [(*   )J. I > (l/u   JA" [<!-   3 a  L    n +J — \       a/     a       n 

Combining (23),   (24), 

Ta    [;■   ]< tta     I TlM'   ).n; - (2/u2S) A* [.   ] -a      + I     L    n +J     \       &'     a      n 

or by (21) 

Ta    [f J - X Aa    [*] <   /im 
-a      + -a   

n -•<10 
Tl(Cn),,- XA[,   ] 

i_    n +j n 

2(u      - X) A    [•:   3 
a an 
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.2 
For a -• 00,   a    - 1      = A,   and since   X< A,   we get 

(25) T[.+3 - X AM<   Um   I^VJ** A ^nM ' 

Also by the lower semicontinuity of the Dirichlet-integral, 

(26) DTt   ] < _Um   Dl(     ) 
n -»«' 

Combining (17),   (25),   (26) we find (with obvious indices   III,   IV) 

V'i *TTT, <  /.im   v'T:    1 = J 
L   III.. L nj ] 'III  ' n -»oo 

W   L*IVJ^ite    WLinJ =  JIV 
n -00 

Since   .   itself is admissible for  III'  and  IV respectively, 

/r       * r      " 
V '   =    T W      ■l- =    T 

L-UIJ      
J
III '      .  IVJ      JIV ' 

Z. 10    Continuous dependence of solutions en the domain and on > , i, m. 

Theorem.   Suppose that the sequence of domains  -,A   |   is character- 

ized by a sequence of functions  |f (C)|   convergent in  E in the Dirichlet - 

norm to a function f(C) defining the admissible domain A  .    Let  Z     (6) , 

Z     (^ denote the set of all solutions of the problems   III  ,   IV  respectively 

in the domain   u.     Let C  be any open bounded set wh th with its closure is a 

subset of  A,   and J?   [f]   the metric space with the distance 

D(u, V)   =   sup    I  u(z) -  v(z)  |. 
z CO 

Then for any  0, 

Z(An)  -  Z(A) 
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in the 1  rfi] metric.      (Z = ZTTT ,ZT„). 00 ill        IV 

Proof.    We have to show that if  A      (z)j-   is a sequence of 

solutions in A   ,   then it contains a subsequence  j*     (z)|  converging to a 
n 

solution in A,   unilormly in any ".     There certainly is a convergent sub- 

sequence as shown ir: the preceding section.     Therefore it only has to be 

shown that the limit   v(z)  of this subsequence (uniform limit in any f) is a 

solution of the corresponding minimum-problem for  i.     It is no restriction 

of generality to assume that the original sequence itself converges to   ', 

Then by the semi-continuity of the Dirichlet integral 

(1) Tfil   i üni    T[    1 
n -oo 

whereas 

(2) UvJ  =   am     L[(tn)_], 
n -»oo 

(3) AU] Mm    Ale   3   . ■• n 
n -. oo 

By (1),   (2),   (3) therefore 

(4) V'U] <   tim     V'Lv   ] , 
n-»flo 

(5) wCf]   <    (,im     WO   3 . 
n -»oo 

Suppose that  v(z)  is not a solution of the mirimum-problem corresponding 

* 
to  A.     Then any solution   ,   (z)   satisfies the inequality 

(6/III) B   = V'U]   -   V'U*]   > 0 (III') 

or 

"if 

(6/IV) C   ■ W[^]     -   WU'   ]   > 0 (IV). 
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The functions 

ln(z)  =  fn(g(z)) (ß =i'l) 

which map the domain A into A    may be used to construct admissible 

functions of the minimum-problem corresponding to the domain  A  .    Thus 

CW  =   »* (hn(2)) 
are competing functions in A  .    By definition we have 

<7> Tln]   '   ^C-^]   H   TC*3' 
further 

(8) L[<l
n*)-] =  "   2 Jj        I fn(C) |2 * *(C) d-  dT1 

\ < 0 

=   -   2 Jj 1 h'jz)  |2 y*(Z)dxdy 

NCtl 

and similarly 

(9) AF; *]     =   -   2  fl |  h'(z)  I2 dxdy. 
L n J J« n 

From the hypothesis that f (C) - f(C) in the Dirichlet - norm, follows that 

hn(z) - (z) in the same sense.    Therefore by (8) and (9) 

r.   #.  n _r   *" 

n - ■ 

* i r ♦"! 

n 

(10) lim   L[(|*)_]    =     L[v*] . 

r    «-1 r   *1 
(11) lim   AU =     AN 

n -.<» 
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By (7),   (10),   (11) a number v exists to any given   -  > 0  such that for any 

n > v 

(12) V'L^Jl   V'[*   J +  ..   wlLin   ,<  WL.   ] +  e. 

On the other hand,  by (4) and (5) a number m > v  exists such that 

(13) v'U] < vTl   1 + c,    w[,3 < wFv   ] + e 
L m-i L. mJ 

Combining (12) and (13) and (6) we obtain: 

(14) ^'[C]<  V'bm]-   B + 2C' CB>0). 

(15) W[*mJ <   W[Vm]  -  C+2G' (C>0). 

(14) or (15) are valid for any given  e  for ^me m.    If we set therefore 

2 e <  min (B, C),   we get a contradiction to the assumption that   i,       is the 

solution of tue minimum-problem III    or  IV  corresponding to  A    .    Hence 

il   must be a solution of the minimum-problem III    or IV for A. 

The solution-set Z depends continuously on the parameters   X , 

and  x or m.   Suppose that  v   (z) is a solution of III'   or  IV for  X = X    -.X    , ■^—————        rr n n        ao 

JU or m and  A  fixed  (X     must be such that the problem remains well-posed 

with X = X   ).    Then by the argument already used in this section we may 

assume that  ty  (z)-.\|i(z) where   \l)(z) is admissible.    Therefore also 
n 

(16) V'[*n ; X^. V'[» ; X.] . W^ i xj - w[* ; I.] 

where the dependence of the functionals  V', W on X   is made explicit.   On 

the other hand for any admissible  u. 
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(W/m) »'[«'\] 2 vl».'x.] 
and 

(17/IV) W[U : Xn] ^ ^n ; Xn] 

respectively.    Combining the relations (16), (17) and the assumption 

X    -• X   ,   we find n       • 

v'[u; x«] > v/[* ; x.] •    and    w[u: x.] ^ WL* ; x-] 

respectively.    Hence   l is a solution of the minimum problem for \ = \ 

The continuous dependence on ai or m can be shown similarly. 
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Part  III 

TOPOLOGICAL PROPERTIES OF THE SOLUTION 

3.1   Theorem.    The sets ßUNfilf]  and T» 8P[i;']-P/ are connected 

Proof.       To study the connectedness of the set N,  we will show that 

if ßÜN  consists of two closed unconnected sets,   O. and O    and if we 

replace these with solid bodies free to move,   the pressure forces result- 

ing from the potential flow will force them together,  accompanied by a 

decrease of virtual mass. 

More precisely,  let O,   and  O    denote two disjoint closed sets,   such 

that the admissible outer streamfunction i|(  (z)  vanishes in O UO = Ol'ii ] 

and is harmonic in A^ = A - 0[\li ] ,   and that O.   is bounded away from S .   We 

assume that O   is free to move without rotation in A .   If c is a complex 

number denoting a point fixed to O  ,  then TFiJi ] is a function of c,   say, 

T[iJ( ] = T{C,7 ).   We will compute the first and second derivatives of 

T(C,C). 

We will first assume that O   is bounded by an analytic curve y   .   Let 

us denote i|f (z, ~) ■ i|i (z,-?; c,"?).   We will need the derivative ^f /9"c .   Since 

Y.   was assumed analytic,  we may continue iji    analytically (as a harmonic 

function) beyond Y,   into a strip of width everywhere exceeding 6>0.   Let us 

choose c    such that |c   - c| < 6,  and denote 1 (z, z, c ,c )s)|i   (z, "z) .If  |c - c| 

In case of open flows p   is empty. 

For sake of clarity in this section h(z) will denote an analytic  function, 
k(z, z") any function of the complex variable z. 
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is small,  then 

(1) **(z.z) 
M 

stY, 

r    +" * i *   i2 
|_-^-_i        (c -c) + 0(|c -en. 

zfeY, 

The function i|( (z, r ) - i( {z, z ) can be continued as a harmonic function 

in A. ,   and  D[| -iJiU. 1< a, .    Hence denoting Green's function for the domain 

L   by G(z,z, C. C) . 

f*(z.I).t(z.7)S.(c*.c)J   ^'^   ^^IdCl+odc^-cl2) 
'\      c 

.2i(c*.c) J ^gUJ^J]   M^LL dC + o(|c*-c|2). 
Yi 

Letting c  -c,   we find 

and similarly 

(2) P = - 2i r sflfeXLija si d? . ac Jv a^ ^c Ti 

We find from (1.3.4) and  (1) that 

TU*] " Trt] = - Zif    (**-*) I1   dz+0(|c*-c|2) 
0 oz 

2i(c*-c)J     (|A)2dz   +  0(|c*-c|2)   . 
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or 

(3) £ =  2i f i%Y dz  . 
Tl 

(3.1) 

Let YiY      denote two piecewise smooth,  simple,   closed,   non-intersecting 

Jordan curves separating O    from O ÜB.    Then by the analyticity of the 

integrands,  the integrations in (2), (3) can be performed along Y, Y      instead 

of Y.  •    Thus we find 

(4) .A 
^c Sc 

4i 
a i^       h± 

j *  a -, ac 
Y 

#* 
and from (2) we find for z not on Y      that 

.2 

^z 
dz   , 

(5) a2^ 
^z äc" 

«Mj K(z,C)   ^    dC       . 

The kernel 

11       9zac 

11 

was investigated by M.  Schiffer and G.  Szego (1949) for the 3-dimensiorial case. 

3T   . r- is essentially the resultant of the pressure forces acting on y.. 
oc * 
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For the two-dimeniional cage see :  R.Courant: The Dirichlet-integral 

(1949), Appendix by M. Schiffer.   Ch.   2.2.   Since the kernel K(z,C) i« 

analytic in t   '    ^ - O,   even for z = C .  we may allow Y      to coincide with 

Y    .  Substituting (5)  into  (4) we find 

(6) jfr 
4TT 

r 

I Kiz.Z) |i 4 dzdT 
Sc 37 J *  J *     . äz    gr 

We can now remove the restriction that Y, be analytic.    Let •JY,    r  be a 

sequence of simple,  closed analytic Jordan-curves disjoint from ^O- and of 

♦ _ 
Y ,  and  Y.    -Y.  Each pair (O.   , O. ) (SO,    « Yi   ) defines a i (z, z ).   The sequence in in      £ in      In n 

It (approximates ty uniformly in some range (c-6,c + 6) and in a neighborhood of 

2 2 
* a lit,,    a i       , ♦ 

Y .   Then ."  -• —r    uniformly on y    ,  since the functions i    are  harmonic. 
•^   2 ^  2 n 
äz' dz 

Similarly,  with obvious notations 

and 

K(z.C)  - K(z.T) n 

Tn(c,C )    -   T(C,C) 

uniformly in some c-neighborhood and on y    .   Hence by (3) and  (6) 

hr %  n_         £T 
be     -    be 

a2T        .2 
n ^   T 

he Sc he he 

and    #* , ^ J—   are again given by (3) and (6) . 
oc      oc oc 
^T     a2T 
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It has been proved by Schiffer and Szego that the quadratic form 

defined by   K  staisfies the inequality 

I   K(c,Tk) tFk> f    nc.^v,. 
i,k-l i,k=l 

n 2   JJ 
P *| 

lil      (Z-^ 
dx dy 

for arbitrary N  and   t. .   From here we find in the limit that 

L   r I, T     -L-   H.r 
* (»-0 -C)2    ö7 

dC dxdy    . 

The righthand integral is clearly non-negative.   We assert that it cannot 

vanish.   In fact,  assume that it vanishes ; then the inner loop-integral 

would vanish for almost all z€A.   .   We find by integration by parts 

I(z) s ^   ^dc= r 
v    (z-w) 

«       z-C 
dC     • 

ac4 

2      2 * 
The function I(z) thus suffers a jump 0|   /^z   upon crossing y    ,   so that 

I(z)= 0   is impossible.    Thus inequality (7) implies that the function T(C, c") 

is strictly superharmonic. 

It is an immediate consequence of this,  that the set P U ^ is connected. 

If it weren't ,   say,   if 
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N.   ,   N     closed and disjoint,  and,   say.    Be N    ,   then by a suitable small 

translation of N.   we could reduce   T[t ] ,  while keeping  L[| ] ,  Afili ] 

unchanged. 

The set T - SP -  B' is connected for similar reasons. 

3.2     The set OU'] has no open non-empty subset. 

Suppose that 0[fl contains a circle C:  |z-z   |< D .   We define then the 

admissible function (Ill'or IV) 

; 

2      2. 
ivlA)(\z'z\   -p   )     in C 

i(z)     outside  C . 

Here uu is given for problem IV,  and 

(1) ■ =  2D[t] /   LCf] 

in case  of III' .   Then 

T[*+] = T[v+1 , 

AU*] = A[i'] , 

L[t_ ]  =  L[^_]  +  r xp 

DC* 3 ■ DC* 3 ♦ T • P - - o 

Therefore,  taking (1)    into consideration 

(2) V'M  -  Tf^l  -XACO^fäf^ 
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2   4 

/ r    *-. r      1        ,       r    1 2       DC*    J  +  fTT/8) 111   0 V'[^   ]   =   T[i]-XAr^]+    m Lt-j W      \.% 
iL[w_] + ("/4)xD4p 

(3)1 2 

=   Tut' ]  - XAU] + m  x 

2L[if   3 + (TT/2)XD4 

W[**3  =  ![♦ ] - XAUO  + D[* ] -UULC* 1 -("/4)x2D4 

■ I   ■ .        24" 
=  W[t] - (TT/4)X  D 

From (2), (3), (4) follows that 

v'U*]< v' [f]  .   w [>*]< w [cl , 

a contradiction.   Hence OltJ contains no circular disk. 

3. 3     The sets N[;3 has no 'internal" boundary points,   i.e. 

(1) SN =   3N . 

Since the domain N is open,   it is the countable union of connected 

open sets   N.(i=l, 2, . . . ).  Suppose that say 

IntCNj)  =   N' ^NjUs  , 

S not empty.   If t is a solution of III   ,   let t.   denote the solution of the 

inner minimum-problem III'     for N   ,   normed such that 

(2) 2D^] I ^ Q       '  2D[t.3/ L[w_] = n   . 

If -^ is a solution of IV and fr   of the inner problem IV for N' ,   (2) is valid 

by (2.1,1). Then t^- ♦ is harmonic,   hence by the maximum-principle of 

harmonic functions 
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(3) *„.(«) > ♦(«)       In N'     . 

Thui 

(4) DUJ DC*] 

(5) DE^] - üUL[* + ] < D[i_]  -  üUL[^_]     . (IV). 

Hence 

is admissible Uf or  IV.  and 

VC^3 > v[*] (in') 

w[^3 > wCf] (iv) 

However,  since ^" t outside Nj ,  (4) woxüd result in 

and (5) in 

contrary to the assumption that if  in the solution of III'  or IV.   Hence S is 

empty, and _ 
N.   =  In^N.) 

for each i .   Consequently 

N x (J N    = U Int FT   . 
1      i        i i 
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i     i 

By an easy topological consideration 

WlntN.   =   Int^NJ  =   Int 5T     , 

hence indeed 
N  =  Int{N) 

3.4     The set P is simply connected,  and the set ML   J la the (countable) 

union of disjoint,   open simply connected sets ■ 

Proof,    (a)   The set PTy] is connected.    If the flow is a channel flow, 

then by the equicontinuity property of the members v    of the minimum 

sequence there is a strip TT -e< TI<TT which belongs to all P[t   ] and there- 

fore also to  P[f] .    If on the other hand the flow is open,   then the projections 

0    of the sets   Qf»   ] on the imaginary f-axis have by Eq. (2. 6. 5)    uniformly 
n n 

bounded linear measures,   and therefore the measure of the projection a of 

the set Q[li'] has the same bound.    lience there is a sequence of horizontal 

A A 

lines r\=r\    , T)   -^ ,   belonging to PLf] .   If P[C'] is not connected then it can 

be decomposed in either case into the disjoint,   non-empty open sets P  , P    , 

where P. is in some strip 0<'n<Ti     ,   and where T|   < TT   in case of channel- 
Z o o 

flows.    Along >P    ,   i  = 0 .    If P    is bounded,   then by the maximum-principle 

V = 0 in P    ,  a contradiction.   Suppose now that P7 is unbounded.    Then by the 

maximum-principle Ä 

i(C)< n<ri 
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in g(P  Ithus il((z) is bounded in P    .    Therefore,  by the Phragmen-Lindelof 

theorem and the maximum principle i|((z) = 0  in P^   ,  contrary to assumption . 

Thus P is indeed connected. 

(b)      The sets P and  N.  are simply connected.   In fact,   if   P were 

multiply connected,  then r = aP - 0'   could not be a connected set,   contrary 

to the results of section 3. 1. 

If some component of N were multiply connected,  then this component 

would surround a set  R   not belonging to N.   Since P is connected, 

RcOfi'] .   But then  R  consists entirely of "internal"  boundary points of N: 

Re 3 N - äN ,  contrary to the result in 3. 3   ,   or it contains an open non-empty 

set,  contrary to 3. 2. 

3. 5     Theorem.        If iit(z) is a solution of a minimum-problem III or IV,  then 

(a) given any   e   >0 ,  any point of the set r= 3 P - B'  has a neighborhood 

in  P in which 

(1) \H\>1*   - €      . 

(b) in the entire domain  P 

i * 

(2) btl>lg,{z)l(WAr       . 

For open flows A = 1 should be substituted. 
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(c)     If the flow  is an open flow or P'   is a straight line,   then 

(3) N|>X* 

holds in the entire domain   P. 

Proof. It is sufficient to carry out the proof for channel - 

flows,   since open flows can be considered limiting cases of flows  in channels 

such that a= |f'(<=o)| -oo   . 

Consider the regular function z = F{9) (9 = cc+ ill') which maps the strip 

E into the domain P in such manner that the imaginary axis and the boundary 

points ±<*> are preserved.       Given the real numbers   p and   q (0<q<TT)i   let T 

denote the triangle domain (p-q,  p + iq,p+q) .   We introduce now the function 

^(Q)   =   Iv-pl+H   -  q 

which vanishes on thr sides (p-q.  p+iq)  and   (p + iq , p + q)  of T.   Given any 

e >0,  let T denote the subset of  T where   v +* P(6)< 0 .   i. e. ,   the triangh- 

domain (p-a, p + iae/(l+e),   p + a)andset 

V + €p(9)       in     T- T , 
♦ I 

(z) = ^(5) =(     0 In    T , 

t outside T . 

;   (z) is then continuous in A.    Let C   (z)=  ,   (C) by the mapping z = f(   ) .   Then 

by Eq. (1.2. 6) 

T[/] - T[0«D[ *|T] -DUlT] . 

79 
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and after a simple calculation 

(4) TU*] - TU] <  q2€(l+C1E) 

where C.  does not depend on q or   c • 

Let a denote the image of T under the mapping F.   Since obviously 

(5) LU*] = LUI   .    AU*3 = AU]+  A 
c 

we find by (4) and  (5) 

(6) VU*] - VU] = WU*] - WUI 1-XA   +q2e(l+C,e)   . 

If i'{z) is the solution of III,  then 

vCt*] - vCf] > o. 

and for IV 

wU*] - wCf] > o. 

We find therefore by (6) 
2 

(7) X<    Ij-«-     (l+Cj«)     . 
a 

The area of the T is 

(8) A     =  q2c/ (1 + e )      . 
T 

Introducing (8)  into (7) yields 

(9) \<  (l+C. e) A   /A 

We will estimate now the righthand quotient.   Since the arithmetic mean is 

bigger than the geometric mean, 
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•j*"j~       [|r'(e)|2d«pd|   >expj-|-    fj   log|F'(e)|dc;dV}       . 
T      T 

and with (8)  and  (9) 

(10)       -i- log |r'(e)| dcpdd <   log(l/v/r) +0(e) 
q   e     T 

The function 

Z(6) =  g(F(e) ) 

maps in a schlicht manner the domain E into   P[v]cE .  We introduce the 

relationship 
Z'O) ■  g,(F(e)) F'{Q) 

together with the estimate  |g'(z)I<A     into (10).   Hence 

-~       '   log|z'(e)| dcpdt 
q   €      T 

(11) 
A 

<   4-      ilog|g'(F(e))| d-dl +logX'' + C-e 
q  «     T 

i <   log(A/X)^ + C   € 

A 

Z(9)maps 8: 1(1 =TT into 6:TI = TT .    Thus Z(9) can be analytically continued 

into the strip TT< f < 2rr   by Schwarz1 s reflection principle.    If T   (q) is the 

triangle-domain T withp = 0,  aiidi(t) is the shift operator  9-9+t ,  then 

the function 
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_1_ 
2 

q « 
(i2) u(t)      — iog|z'(e)| dcpdi 

•J 

i(t)To(q) 

is harmonic in the strip S   :  0< >< r = 2n - qc/(l + e) .   We show that u(t) is 

bounded and continuous in S.  .       Eq. (1 1) already established the boundedness 

of u(t) on the real axis.   Consider the reflection f of the triangle j£(t. )r   (2q) 

for real t.  on the line   ß .    By (1 1) then 

(13) —    [j     loglz'O)! dTdt<   21og  -      + 4C3 e   <C4      . 
q ■ T 

Observe here that the constant C. does not depend on q or e. 

The triangle T    the vertices of which bisect the sides of T   ,   is obtaini d 

fromi(t,) T (q) by a shift ir ■ 2Tri-iq c/(l +e ) or from T    by a shift t = t. f ir 
1   o o I 

Since T.cf,  by (10) therefore 

(14) u(t) <   C4 

if t is on S* = -(9 : it = r[    .    The same inequality holds if t is real. 

Since the mapping accomplished by Z(Q)  is schlicht,   Koebe's the« iim 

can be applied after a conformal mapping of the domain  E  into tht; uni< 

rinle.    By routine calculations Koebe's theorem leads to the inequalit' 

2|TI 
(15) |Z'(6)|  <       * . \Z'{W2)\ —    z sin , 

nS.    ,   asy-»*00, and thus by (12) 
c 

u(e) <2 |cp| + c5 
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By the Phragmen-Lindelof theorem and the maximum principle therefore 

(14) holds everywhere in S    .     The continuity of uf?) follows from (15) easily 

by substitution into (12). 

From the existence of an upper bound independent of q and the continuity 

of u(t) follows the same for 

(16) v(t)=-2- log |F'(6)| d-J d^ . 
q   e     S(t)To(q) 

Therefore G(9) =log |F  (Q) | is also bounded.    In fact,   if v(9  )> M for some 

internal point 9    and real M,   then given any 6 > 0 , q can be chosen so small 

that G(e)> M-6 in 8(9^ ^(q),   and then also 

(17) v(9  )>M-& . 
o 

Consider now the function w(9) bounded and harmonic in 0< ^ < TT /2 

which assumes the boundary values 

(18a) w(p + iTT/2)=G(cc +iTT/2)+log X 1/2 

(18b) w(p) = 0 

The function 

(19) v*((p)«-^-  JJ [G(9)-w(9)] dcpd^i 
q  e  S(t)To(q) 

is harmonic in 0 < t <r-'n/2f   and by (10) 

(20) v*(cp)<log \" 1/2 + O(e) 

By (18a, for sufficiently small q 

v*(cp +i(r-TT/2)) < log \" 1/2 + e . 

By the Phragmen-Lindelof theorem and the maximum-principle follows then 

that (20) holds in the entire region (:p replaced by 9).   Therefore from (19) 
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follow« by an argur ent similar to the one preceding (17) that 

(21) ill G (e)<w(e) +log X"1/c + e 

By the continuity of w(6) on the real axis and by | 7 11 = 1 / | F '(ü) | we 

obtain the statement (1) from (21). 

(22) 

To prove (2),  consider agair the analytic function 

Z'O) =   g'(F(e))F'(9)    . 

In some vicinity of the lines ^ = 0 and \|( = 2Tr  , 

(") |z'(e)| < (x'^-c) g/(F(e)) 

<  (X"*  -c) A* 

Because of (15),  we can apply the Phragmen-Lindelof theorem and then 

the maximum-principle to Z^G) again and show that (20) holds everywhere 

in E .   Since C   was arbitrary,   indeed 

|Z'(9)| > (A/X)* 

for any 9 .   By (19) then 

^'(9)1 1 
(A/X) i 

-   g,(F(9)) 

resulting after  change of variables in (2) . 

The proof of (3)  :     The function dz/d9 is regular and by (2) bounded 

in E.    Therefore in case of open flows it follows from (1) by the Phragmen- 

Lindelrff   theorerr. and the maximum-principle thit 

»l^-* (9€E) 
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which implies (3).    In case of channelflows with straight 9',   the function 

,(z) can be continued into the mirror image of A   on the line ?'   by 

Schwarz's reflection principle,and then the   same reasoning applies as 

for open flows. 

The theorem just proved is quite fundamental  ;n the investigation of 

the properties of the solution.    In fact,   the remainder of Pa   £ III of this 

treatment contains essentially nothing but corollaries of this theorem. 

3. 6     The boundary of N contains an arc of a of positive length.    For,   by 

the theorem 3. 1   and the symmetrization there is a segment 1= (0, iK) (t >0) 

of the imaginary axis in N.    (At the normalization of i('),   f(C) = C was 

agreed upon.) 

The solution of the restricted outer minimum-problem can be only- 

increased by a decrease of the set N because of the maximum-pnncipli'. 

Hence 

(1) .+(z) 1  ^   (z) 

where '    (z) is the streamfunction of the flow in L over    I (i. e. ,  for which 

0['    ] =1).     S ince 

't*|   _n     ■  0, also      kvl   -n   ■ 0 |z=0 |z=0 

By the theorem 3. 5 therefore the point z = 0 does not belong to ^P ; 

consequently a circle C :   |z| < P exists such that     CilA c N . 

Except if the set N is empty.    (Trivial solution,   see next section). 
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3. 7     Trivial solutions. 

We will say that if 

tjz)   =   Img(z) 
* 

is a solution of a minimum-problem,   it is the trivial solution. 

The solution of   III is never trivial if a positive m is specified.    The 

question arises whether the solutions of IV are not trivial ? 

A sufficient criterion in light of theorem 3. 5 is that if anywhere 

in A i 
|vi(z)|<X?     , 

o 

then i    cannot be a solution of IV.   With the usual notation 
o 

M = l/\i'{0)\Z 

IV will have a non-trivial solution for any (X., m) ,  for which IV is well 

posed,  and 

(1) M <   X   . 

By definition M < A .   If A / E,  then M < A,  and (1) is satisfied in the strip 

M < X < A of the (JU, X) plane. 

Goldshtik (1962) proved (although for bounded domains and different 

boundary conditions) that for X = 0 ,  the differential equations have no other 

than trivial solutions below some value of ■ .    This is in harmony with the 

In other words,  the trivial solution is the streamfanction of a potential 
flow in A . 
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present findings. 

^. 8     The set T - 9P -  ^/ is a rectifiable curve.      In fact,   letu.v^T 

The function w = F(z) maps   P  into  E   conformally,   and let z = G(w) denote 

its inverse.    The image of u can be defined as the closed set 

n F(u) = 
I€S 

F(I) 

where S    is a basis belonging to u in the topology of  P.   F(v)  is defined 

similarly. 

Let the interval (o, c) denote the convex hull of the set F (u) U F(v), 

with c€F(u) ,   reF(u)  real ,  and let D   = C + i/n ,   r   = - + i/n .    Then n n 

G   (n   )-u ,      G (r   ) - v .   The intervals J   = (D    , r   )  are mapped by G n n n        n      n 

into the curves P    .   If '     is the length of >r     ,  then from (3. 5. 1) follows 
n n n 

that    given   e>0,for sufficiently large n 

(1) w dg 
dz' 

-1 
■f d9 | <  ^ ^  (^- D) + t . 

Thus  -     are   represented by vectors z= Z   (.) of the uniformly bounded 
n n 

variation (1) .    By   Helly's theorem of choice we can therefore select a 

subsequence  Z     (T) converging to some Z   (Qp) of total variation 

\    (a-C) •    Z   (cc) represents therefore a ractifiable curve X    .    The curves 

are subsets of the level-curves % - 1/n   ,   so that the curve X    must be ?. n "^ 

subset of JP ,  and must connect u  and   v . 
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3.9     The set PU3 has no "interrutl" boundary points,  i.e. 

(1) aP = SP   . 

We have to show that    Int(P) = P.   Clearly 

PcInt(P) = P' 

Suppose that 

(2) P'   =   PUS. 

where S is not empty.    Then S^SP ,  thus 

*(z) = 0    if    z€S . 

* 
We define the function :  (z)  such that the restricted outer minimum-problem 

defined in the domain P   has a solution ^i (z)  ,   ijf (z) > 0 in P   ,   hence also 

on S.    Therefore by the maximum-principle 

i|/+(z)  > ij((z)       in P . 

Hence by the definition of  |      , 

(3) rc^ < Tr*+] . 

The function 

(4) /(z)  =  i*{z)  +  Mz) 

is a competing function for III ,   IV respectively.    The equation 

is obvious ; 

LU*]   =   L[*   ] 

A[**3  = A[*] 
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is valid,   because the sets Q[     ]   ,   QU']  differ only in a subset of T 

which is a rectifiable curve and therefore of zero plane measure.    Hence 

v[V"  3 > v[ti'   1 VLViir -      ur 
and * 

w[cIV] > wr^IV]  . 

with obvious indexing of ;• •    However,  from (3),   (4) 

V[*l = T[C*3 + D[ir_] - XAC/'] <   T[t+] + D[tJ - \A[v1 = V[vl 

and similarly ^ 
w[* ] < WLJ , 

a contradiction.    Hence  S defined in (2) is empty. 

3. io   a pn^ ; JNOL i o[v] = Y . 

The relationships 

SPOACO ,   ÖNDAcO 

are consequences of the continuity of „(z).    Therefore it is sufficient to 

show that 

(i) oüvlc äpn?N «v. 

By (3. 3. 1) 
9N =   ON  =   3(A-P)c 9U>P    , 

hence 

(2) oNOAcdPOA     . 

Similarly,  by (3. 9. 1) 
SP =   dP = 8{A-N)cPU Q/

Ü$N  , 

19 



hence considering also (2) , 

(3) aPflA  '   SNDA . 

Since 0[;] contains no open non-empty set, 

(4) OU']cOPüaN)OA     , 

therefore Eqs.   (3), (4) result in (1) . 
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PART  IV 

INTEGRAL EQUATION AND APPLICATIONS 

4. 1     The method of interior variations.       Garabedian and Spencer (1^52) 

showed "how restricted "analytic" variations of the domain can be applied 

to deduce from a minimum-principle boundary conditions in explicit form, 

i-ven though smoothness of the domain boundary is not a priori known.    In 

the problems of free boundary problems discussed by them even the anali - 

ticity of the unknown boundary curve can be deduced.    In the present problem 

the boundary curve is not a free boundary,   it only separates two domains in 

which the solution satisfies different differential equations.    It is therefore 

questionable whether the boundary is analytic,  and there seems no known 

method available to prove it.    Nevertheless,   the method of interior variations 

will be quite useful. 

We will apply a variant of the methods of Garabedian-Spencer (1^52) , 

Garabedian-Lewy-Schiffer (1962)  and Garabedian (1^4),   Chapter  15. 

The interior variations will be given in the halfplane or strip domain E 

coiinected with the flow domain A   by the conformal mapping 

functions z ~ i{C,) ,   C - g(z)   .   (rather than in A   itself).    It will be assumed 

that f(C)   satisfies the conditions   in Section 1.1. 
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Let    €     denote a small positive number and F(C,T) a complex 
o 

valued function with finite Dirichlet-integral.    Then we set 

(la) C* " C + €o  F(C.T) 

(ib) *    (C.T) = HC ,Z   ) 

€     should be chosen as small that (la) is a schlicht mapping,   F should 
o 

be such that the boundary line(3)   ri = 0 ,   (t) = rr) be mapped into themselves. 

We will also assume that F together with its first and second derivatives 

is bounded. 

We proceed to estimate the variation   T[^ ] - Tit]   •   La* I     denote 

the preimage of the domain  I    =|C   :1C   ^r,   C^^f    under the mapping 

(la).    Then by Eq.   (1.2.5) 

.* Z 
TCfVlto      {JJ(|||       +l)dfdr. + 2Re   F      f  dC } 

r P 

(2) 

■ lim (Tj + T2) 

We use the estimate 

(3) >(!. ,*,     v      o     sc ; 

where   l9|< 1 and  K  is independent of r.    Thus we find by routine calculations 

from (2) and  (3) 

For the sake of clarity here and in later sections h(C) will denote an 
analytic    function of C ,  MC,^) -'■ny function depending on f and TI  . 
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TU*]- TU].   eo   Hm    Re{8 JJ    (|t)2||   6^ 

(4) ' _ ^ 
-     f    (2* "Y C )dF(C.C)+ Y   J       Fdc}  + 0(£2). 

r r 

We will compute   next the variation of the integral 

I =      i' IKz.z) dxdy =  ^ U(C.'C) \i'{0\Z d?dT)  . 

\|i<o MC)<o 

where U(C,T) ■ U(z,I) = 2uüt(C. C ) - X .    Then 

(5)    I*  = U*(z.-E)dxdy  = U^CÖlf^O^d^dT) 

**(z)<0 {*(C)<0 

JJ i}*(C.T)k'(C)|2  ^^     d^d.* 
;*(C)<o ^'r]) 

where ^ 
u (CO = u(C ,C  ) .    * (C.T) =  *(C .T)  . 

With the variational formulas (1) then 

U'id2 -  k(C*)|2 - 2€oRe {F(C) f "(C*)  F(C*.C*)}    +    0(e2) 

Substituting this and (3) into (5) leads to 

(6) I*-I = .2eoRe{   JJ [2«}(C,T) - x] U^Ol2 

N 

[rc(C.T) + f^   F(C.r)j d?dri + o( c2) 
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We cpecify now the function F(C. C) for open flows.   Let r denote any 

point in E,  and p  any positive number for which the circle  C   ={*: |C-T|< p| 
0 

is entirely in E.   We set 

eia(r-T)/D2 +e'ia/{C-T) if     CCC 

(7) F(C)    = 
o 

eia/(C-T)  + e"ia/(C-?) if     C€E-CD   . 

If 

a is here an arbitrary real number • 

£ _ 
It is easy to see that for sufficiently small values of e    ,   C   = C + €   F(C, C ) 

o o 

is a schlicht mapping of E onto itself.   We introduce now (7)  into  (4) and (6). 

A certain care is required in the evaluation of the line integrals in (4) .   Let 

i9      ~ *       T 
us denote     C = r e     ,   )|((r, 0) =   il/ (C, C)  . 

TT 

J(r)  = | '   Hr,e) - rsine] d9     . 
0 

nab =  {  C :  a< |cl<b,   T1>O} 

rr • { c: Id •».   TI>O} 

then by Schwarz's inequality 

|j(b) -  J(a)|2  - [ JJ (U   -   sine) drd9]2 

nab 

<    ff r^-   U-r-ine)!2  rdrde     17 * 
—   JJ_       L dr J J.j r 

pab ab 

de 

< TTD[J-T1 |fiab] log(b/a) 
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Keeping a fixed,  and letting b - ^ ,  we find by the boundedness of the 

right hand Dirichlet-integral for admissible functions   .  that for b-« , 

(8) !j(b)l   = 0(^/T^^>  )        . 

If  |C| >2|T(  ,     then by (7)  a constant  C,  exists,   such that 

Therefore by (8) 

IT 
99 

(...)   -  d9 0(r"./r^T ) 

and thus 

lim 
r  -.00 

1    99   de 

r_ 
lim 
r -• 

r sin if d5 n cos a 

Evaluation of the other terms in (4) is straightforward.    Thus we find for 

small   o 

2 

(9) 

TCv*]-Tr   ]..oRe{^    [J    (-^2 d§dr, + 2TTeia} + 0(e:) 

- 2 2 
2nRe J   4 € t_(T,T)     +   t; j   + 0(r    c   )   + 0{   e     ) 

where    £=€   e      .   Similarly from (b) 
o 

(10) 

1-1=2 Re (c ff    rz^cn-x::^^- .  ^ 
v<o c-r      (c--) 

f^-v^T1 ^)jl''(C)l2au.} + o(|.|J) 

o^ 



(4.1) 

'here    (C. C )  is the characteristic function of the set E - C 

Suppose first that v(z, z") is a solution of minimum-problem IV. 

Then it is also a solution of the minimum-problem obtained by narrov.ing 

down the class of admissible functions to those obtained from ^{z.'z) by 

the interior variations of the of the domain A   specified in Eqs.   (1) and (7), 

say f (z, 7; c ) .   (Then of course,   „ (z,7 ) = Y (z.Y; 0) . )      The functionals 

TÜY] ,   ifv] become now ordinary functions of the complex variable c.   Hence 

for ¥(2, z"; €)  to be a solution of the minimum-problem IV,   we must have 

(ii)   -|- {TCTT-WUT ] - XA[Y3}    -«-rr (TM+ICY])       =O. 
oel - 'e=0del J      n € = 0 

If now i is a solution of minimum-proHem III    ,   then (1 1) is still valid, 

but x is then an unknown Lagrange multiplier  ,  to be chosen such that 

L[Y ] = m   can be realized.   The derivative (11)   is obtained immediately 

from Eqs.   (9^. (10) leading to 

(12) 
<0 (C-T)"        (C-T)" 

7$-  [^   *Th]}lf'(C)l2d?d^O(p) 

The left hand side is independent of 0.    Thus letting c-O,  we find 

'Zi(r.i) N2 
il^iN,2 + I = -i 

TTTT^rn., 
(13)    4\^'r'

11 r^'-n jj    L2'^(C^)"XJ,L^(C,T)+K(C'T)j'f/(C)'   d'dT1* 
J< 0 
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where 
K(C.T) = 

(C-T)' 

We return now to the "physical" coordinates x, y,  z=x + iy : 

(14)     4(S   ^^Y    =    -■■;        !_2^(2.T) -^^(z.t) * K(T.t)Jdxdy.g.(t)2 . 

t<0 

where 

(15/o)    K(z.t)  ■   g'(t)2 

(16/0)   hz,t) ■ g^t)' 

+    ^i£l 1 

[g(z)-g(t)r     g'iz) 

i   +  s» 

3       g(z) - g(t) 

1 

■g(Z)-g(t)]2        ?'(z)3      K.»»-«W 

The function   g{z)  here is defined by the relationship 

g(z)  =   g(z) 

and is analytic in the reflection of A to the real axis. 

For channelflows similar results can be obtained   if we define 

C     =  |C: |tanh(C-T)/2|< D | 

in C ■ T 2       - id C-" 
tanh        2      ^ P    +e        coth     2 

F{C.C) 
emcoth T -ia  coth  ^rr 

+   e 2 

if  C€Cc   . 

if  C«E- C 

Then using the same technique  as for open flow» we find that (14) is again 

valid with 
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(4.2) 

,'5/<:h)    K,z't| ■  S.nh^(l)-B(t)]   {"*t.(.)-,(t)] +   ^ ;        • 

and 

2 _ 

"6/Ch,     k{zA) -   sinh^l'zj.g^^""-^"' - •<»» +   f^ }       • 

The functions ^(z.t) defined by (16/o) and   (16/ch) are analytic if t*^ and 

z€A   ,   where  A is the mirror image of A  to the real axis.    The function 

K(z, t) can be written in both cases in the form 

(17) K(z.t)  =   —^     +     k(z,t) 
(■-t) 

where k(zIt) is analytic in both variables if zfA , t CA . 

4. 2. The matching condition. We want to use now the integral 

equation (4. 1. 14) to derive a matching condition on the boundary Y 

between  P and  N.    The set N is in general an open set consisting of finite 

or countably many disjoint open connected sets.    Let  N    denote one of them. 

For the derivation of the matching condition it suffices to investigate the 

integral equation in any neighborhood of the   curve  Y   •    Therefore we write 

it in the form 

(1)     4TTvt{t.r)2 =-   Ff  C2«t(«,¥)-X]    —j-    dxdy  +  A'(t) 

N' i%mt) 

where  A'(t) is an analytic function in Int( PUN ) .   We will show first that 

the term 
J(t,t ) 7      ^^-     dxdy 

,   (z-tr N 
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is uniformly bounded.   We obtain by integration by parts,   taking into 

consideration that » vanishes on ^N   , 

(2) J(t.T) - JJ 
f   (z.z) z  

z -t 
dxdy 

N' 

Let N     denote the open set where il< -  e,   N C N' .   Then by integration 

by parts 

J 
.     (Z,  7   ) _   — 

N (^N N 

V   _ dxdy z z 

(3) 

- -—-—    \li_(z,z)dz-    - -—-   dxdy     . 
2     I     z -1 4    J J     z-t 

N 
e e 

where in the second equation  |   _ «  (f/4   was taken into account.   From 
z z 

At ■«   follows by Gauss' identity that 

(4) JT S *• ■ •*« 
3N 

ät/än>0 almost everywhere on ^N     because of (2. 5. 12) .    Hence (4) 

can be written in the form 

J l|fl idz 
N N    — N 

9N 

Therefore from (3) we obtain the preliminary estimate 
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(4.2) 

(5)       |Jc(t.t) 
it   (z.z) 

z - t 
dxdy   <   — (DA^, 

I ""  2       N 
N 

Since this inequality is valid for all c>0,   even 

(6) J(t.t ) < -»A      . 
2        N 

Next we estimate the integral 

(7) JVT) = J 
N 

dxdy 

,     (z-t)' 

Let N'   denote the intersection of N' with the circle  |z-t|< 1 .    Then by 

integration by parts 

J*{t.F) i.     P        dz p 
2    J       z-t J, 

>N" N-N 

dxdy 

If d is the distance of  t from   JN      and   |t|< R ,   then from here 

C, 
(8) 

i   *     —   i 1      ' J (t.t )\<   rr —     id    j 

an4 M«l +A
N' 1 T    ' 

where C.  may depend on  R  but is otherwise independent of t. 

(9) 

Substitution of  (6) and   (8)  into   (1)  yields 

lytj)!  <    cd'*       . 

implying also 

(10) ;(t, t)|<   4 cd' 
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Therefore i itself satisfies a   Holder condition with exponent i, in any 

subset M   : |t|<R of N'.This fact implies however (cf. Courant-Hilbert II, 
R 

p. 353) that 

^2-U^LLdxdy 
M, (■-t) 

is also Holder - continuous in M^ .   The remainder I  -L, is for sufficiently 
R "^    R 

large R analytic   there.    Thus (1) can be written in the form 

(11) 4nt (t,r)2»-[2l«0(t.T)*(t,r)-\] ' i^_+c(t.r) 
J   (z-t) N 

where C(t,t ) is continuous in L,   and £(t, t ) is the characteristic function 

of N'. 

We will transform now the terms of (1) into the C-plane in order to 

make use of the symmetriaation properties of ;(C).     The integral J  (t, t ) 

(Eq.(7)) can b" tranoformed as follows. 

j (t)=j     JLü2i_—^d?d- 
^    [f(C)-f(T)]2 

(12) 

fiijj   öSd^.f^ilJJ   Ll^d. + A(T) 

where A(T) is continuous in E.    By integration by parts 

r-- 11^^41  ^ 
N ON' 
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hence the second right hand term in (12) is bounded.    Let us examine 

M   ^d~     i   r dT 

Let T    denote a point of äN   in which the latter has a tangent,   with unit 

vector eia .  Given C J0 and 0<5   < n/2,  let o 

(13) e      o 
i(a + 3-TT/2) 

1^1 where 9=B(e), IßH 6    •  Lei   .. denote the path ON =Q   without the arc 
o ^ 

|lmT -Ti^e.    Then by Prualoff's lemma (cf Privaloff (1956) Ch. 3,^ 2, ) 

(14) lim   (J   ^T   -J ^    v=TTi[T2] 

the dot denoting differentiction with respect to the arc length. 

We combine with (1^) :he limit relationship 

lim   J   r».    -ni, 

valid for any T   in which »Q   has a t ingent.    Thus 

£-0 n'     £    o.- 

We will say that T "• T  "non-tangentially" if e-0.    Notation: T-•< T e     o e       o 
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i. e. ,  for €-0 

dZ 
ir\= 2i J r^T + 0(1) 

■n is a monotonic function of the arclength along the curve f' because 

of the symmetrization property of MC »t ).     Therefore 

I. ST 
n /       o 

—"- , = 2 log -r + C , 

or 

(15) dr 
^' 

< 4 log f . 
n 

By (11) therefore constants C1,C2 exist,   such that 

(16) J'(t)< C1 log (C2/e) , 

where 

(17) 

la . 

..,(v..«^'). 

and e       is the tangent unit-vector of Y in T . 

By a theorem of Privaloff (1919) the mapping f(T) is angle-preserving 

A 

in the points of V  with the exception of a set of measure zero.    By the theorem 
A 

of F.  and M. Riesz (1916) a set of measure zero of Y is mapped by f(T) into a 
A 

measure zero of Y.   Therefore non-tangential approach to Y is equivalent to 

non-tangential approach to Y.    Hence the appraisal (16) remains valid with 
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suitably chosen constants C   , C-,  even if (17) is replaced by 

io. where tCY,  and e     is the tangent unitvector of V in the point t. Taking (10) 

into consideration,  we find from (16) that 

(is) ml. '      dxd^0 

N^  (z-t ) 

if z-'t  non-tangentially, for almost all t€Y/.    Let now 

Zp=t.eei(a + 8+n/2)|2N=t+eei(a + 3+TT/2) 

For sufficiently small e the segment t t^P, t t,6N for almost all ttv'. o 1 o c 
By the theorem of Golubew   (cf. Privalow (1956)) 

lim {J ß, - J fF.}..m.-M..mTt. 
-o VN- l-tp »it ^' 

or,  by integration by parts. 

(i9) lim  fJ/Ä^L-. [/«L-j-.m 
e-0   ^J (z-tJZ      JJ   (z-t.fr 

J 
4- 2 

N7 H N' 

Substitution of (19) and (16) into (11) yields 

e-O z=Zp z=zN 

1  
This theorem is an easy consequence of Privaloff's lemma. 
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We will prove next that ät/äz has measurable limits if Y    is 

approached from either side non-tangentially: 

for almost all t€Y  .    Since H5 + iri) is a non-decreasing function of S for 

IX),  we find 

'2i>        -i<^4)<i- 
n 

Let now V  denote an arc of Y,  which has tangents in its endpoints a, b,  and 

3p a rectifiable arc connecting a and b of finite length inside P.   Y    and 3p 

are chosen so short that in the domain Dp bounded by Qpand Y   for any two 

points z, z    in Dp 

(22) [phg'U) -phg'fz*)! <TT/2 

• 
We will consider the point z   fixed,   z variable.    Then from (21) and (22) 

a = ph g'U ) . 

If the function z = F(Z) maps the unit circle R into Dp conformally, 

then-iH- =H(Z) is an analytic function of Z in R.    Hence by Fatou's theorem 

we find that there is a measurable function $(9   ) on the unit circle such that 

/,   «.i ,, 

(23) -TT+0<ph(Ji)<TT+ a, 
z 

where 
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lim       exp(i logH(Z))= 1(9) 
7   u  19 Z-^e 

for almost all 9.    By the theorems of F. and M. Ries.; r .id Privaloff quoted 

above,  for    ttY US-, 

(24) lim    exp(ilog|i) = *(t) 

where i(z) is a measurable function defined on ^Dp.   Let T. denote the subset 

of SDp on which *(t) = 0.    Then 

f hi \ 
lim    ph(fl)>-«    ifzn€E, 

o 

with the exception of a set of measure zero. By (23) however, ph(<H7öz) 

has a lower bound hence £ itself is of zero measure. Thus (24) has the 

consequence that a measurable function . p(t), defined on v    exists, such that 

I 
(25) lim {M 'öz) =exp(-ilog *(t)) = /p(t) 

z -* t 

for almost all t€.Y  , and therefore for almost all t€Y. 

Consider now domains DN bounded by Y    and arcs ®N in defined 

*l analogously to Dpand Qpand inside some circle  |z-z   | = D.    Then we set 

(26) z1=z* + 2Pe"ia   , 

ö\|i   _ öü(     ID   io  _   |_ ia. Oi       dil(     ID   io ia. . i 
= 71 + Ie      ReLe    (zj-z)]. 

It is easy to check that <H   /oz is analytic in D...   With the choice (26) of z 

Re[eia(z1-z)]>0 , 
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If er has the same meaning as there then 5i|(/äz   satisfies (2 3).    Therefore 

also 

(27) a-rKph^i- <a+TT . U^V 

We can prove now that a measurable function 1..  (t) defined on 

V    exists such that 

(28) lim   7j-=i^(t) , U€DX) . 
z "• ^ t 

The proof,  based on Eq. (27),   is identical to the proof of (25).    We define 

now 

^{t)^^{t)-^eia Re[ei3{zrt)]. 

Then from (28) 

(29) lim    |i=v'N(t) (zfeDN) 
z-* t 

for almost all t on \' .    (In (29) ^ is a measurable function of the arc length. ) 

Substituting (25) and (29) into (20) we get 

(30) [♦p(t)]2-[rN(t)J2«-(X/4)r2 (t€Y) 

a. e. on V.    For all t for which (25) is valid,  we find 

(31) ph ^(t)=ph v/N(t) = -a. TT/2 . 

Therefore for Zp-t = ee1^ '   ', (zp on the normal of Y in t) we find by 

integration 
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hence 

nxp)=-2ip(t)(zp.t) + o(Up.t|) 

(4.3) 

(32) -vH) = lim 
P    e-0 

l(ap) 
*p-t = 2 I /p(t) 

and similarly 

(33) (Ü) = lim 
N    e-0 

= 2 ^N(t) 

• ia 
Combining (30), (31), (32), (33) and the identity z =e       and substitution into 

(29) yields 

for almost all t€V . 

4. 3   Boundedness of the eddy region. 

We assume that the eddy region N is unbounded and show that this 

assumption leads to a contradiction. 

Because of Eq. (2. 6. 5) and its  connectedness,  f7 has to lie in the strip 

0<r|<T1    ,  therefore the "length" of N ,  that is sup |Re (Cj-C^rCj, C2 G N j is 

infinite.    Since the set P[i'] is connected in the complex topology, the entire 

real axis must have a neighborhood in NU] in the Euclidean topology.   The 

linear measvre of the cross sectiona«,    of the set N[i ] with SB5   tends to 

zero as ? ■■,00 because mes(af) ia by the symmetrizaticn property a decreasing 

function of 5 ,  hence it has a limit,  and this ILnit is zero for otherwise TW 
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would become infinite.    The area Af/ [v] of the part %>'' of N[i ] also 

tends to zero because of the finiteness of the area A[l].   We will show that 

assuming an infinitely long eddy region, 

,i) j(iijp)2«-i(i-x/A)(q.p) • 
P 

if p,q are real, p-"» and lp-q|<l.    The integration here is along the real 

axis.    (1) can be written in the form 

q     *   2 
(IM J   \P-)   d?-(l-X/A)(q-p) . 

P     ^ 

A 

IT-
1
- )        is an increasing function of   ? ,   since for any h>0,   :(?+ih) is in- 

creasing for a symmetrized . .    Therefore (1) implies that 

(2) 'lltiilT,        -(1-A/A)^  as ?-», 

uniformly in any finite interval.    On the other hand it will be shown that if the 
A 

real axis belongs to ^N,  then 

(3) |     V" 11 d!-0 o       or 
P 

asp-*00,   contradicting (l1). 

We start with the proof of (3). 

In case of open flows,   we set A = 1. 
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We introduce the following notations: 

N1 for the segment p <§<q of N, 

Aq for the area of Nq, (if q = ",  it is omitted) , 
P P 

a    for the segment § =p of N . 
P 

From 

follows 

V2^ ruu 

(4) v2 ;.«if'(c)i2 

/^j2 
hence by Guuss' identity and by If'(Ol    > 1/^ # 

-uuA    /A<j7 72^d?dTi= J      |id8 
N ON 

P P 

er   ö? p   K*r] ^=0 h   d' 

Integrating with respect to ? we get 

P+l P+l 
(5) ""A /A>    f    I(?)d?+J    «j|ldTl. 

By Schwarz1 s inequality 

'ip+1., r **   i2 

p       di 

Hence taking into consideration that I(p) is a decreasing function,  we obtain 

from (5) 

no 
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It remains to prove (1).    We can write the integral equation 

(4. 1. 13) in the form 

4TT(ii)  +n=.\lf/(T)|2LI1{T)+J1(T)J+2(|f
/(-)|2LI2(-)+J2C)J 

.I3(T)-J3(T)-I4(T).J4(-)+H(-) 

where 

I,(T)= d'd 

"N' (C--)2' 

I(). ILLiLpdl^    (-.^.,1^., 

N7      f'(C) 

H(T) = j [2JLV(:)-\]IK  (C,T) + K  (C.T)]-d5dTl 

where 

N/ = NT/2=-C:|?l> T/2,   :eN;, 

N*=N0
T/2 ={C:0<?<T/2, I^N f 

The functions J.,J2,J:,,J4 are obtained from I., I,, I-, I. by replacing 

1/(C-T) by 1 /(T- r) in the corresponding formulas. 
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We first show that H, I2, I-, I., J-, J-, J. tend to zero as T-» .  H(T) 

clearly tends to zero because in H(T) the function (C-T)'    is majorized by 

2/T,  and all cofactors of (C-T)"2, (C-T) "1, (T-T)"2, (^-T)-1 in the integrals 

are uniformly bounded.     The integral I2{T) is estimated with the method 

applied for J(T) in section 4. 1.    Thus by integration by parts 

jjm^^.fr  ^«+J^||^ 
NMC-T) ^ 

aT/2 N7 

C dN7 N7 

where a   ,, is the intersection of the line  Z = r/Z      >vith N7.    In the last 
T/1 

evaluation of the integral Eq. (4) was used.    The first right hand integral 

converges to zero since  |C-T|>T/2 and rnes.(a   ,_)"*0.    The second integral 

has zero limit by (4. 2. 4).    The third is majorized by 

[J 1^(012d5dri<JL A(NT/2) 
u 

N 

which also has 0 limit.   Therefore ^("^ also tends to zero as T-*00.   The 

terms L, 1. can be estimated together,   since 

(7) If^-lfV)!2 .H(C T) 
(C-T)2 C 

where H(C, T) is bounded in the whole plane.    Observing that I4(T) is also of 

the form (7),  we find sufficient to estimate only integrals of this form. Thus 
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lUT)|<
r Mal   „Mr.sc.'i JäläL 

■* "      r  T K-T ,      lt-Tl k- • I 

Let n denote the intersection of N with the circle 

lc~T|<./rT/2. 

We write 

n Ic-T|  N-.P. lc- ' 

Here 

^T/Z      2n 

and 

l'<     1        dr       dCpaZTT^/T,, 

hence indeed 

(8) \li{r)\^Cl(2^+l).;KT/2-0.   as T-.», 

and similarly 

|l4(T)| -0   as T-<00. 

The same arguments hold for J2(T), J^"), J4(T)    hence these integrals also 

tend to zero as T-» .    We thus found that 

^(#)2"-M«'(T)li{JI^W+IJ&;^<'). 
f/ INT 
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where 6(T)-0   as T-«».    It is known that if H is any path inside N 

connecting the points p,q€.N[. ],   then 

(cf. Garabedian-Spencer (1952)).    This is even true if p, q are on ON .  We 

set 

dTj|,li^=G(T).  If^T)!^^!). 

p 

Then by integration by parts 

J  F(T)G/(T)dT = [F(q)-F(p)]G(q) 

+ F(p)CG(q)-G(p)]- J F'(T)G(T)dT. 

P 

Here G(q) is uniformly bounded,   and since 

lim F(p) =a2, lim F^T) = 0 , 
J -tCD 

we get 

q 
lim        F(T)G/(T)dT=lim  F(p)[G(q)-G(p)] 

^ P 

■ a2 TT(q^) + U«   JJ (^i- .:-L)d?dn. 

^ N* 
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The last integral has zero limit (see Eq. (8) ).    Hence 

(4.4) 

(10) lim ?|£'(T)|2dT [T-äS*! =a2n(q"p). 
P $ (c-^2 

Quite similarly 

q 

P 

d§d? ■JK^-^)«^. 
j/ (T-T)       ^   T-q    T-p 

hence by the same steps 

(11) lim       IfV)!2^ JJ 
„ —• 00 ^ t 

dWu 
p—p i? ^-^ 

Substitution of (10) and (11) into (9) yields (1). 

4,4 Lemma.    Suppose that v,(z), • T^ 
are solutions of W in the 

domains A,, £.? respectively,  for the same values m, X.   If there is an open 

nonempty domain GC"   O'u«   such that >Jl,(a)=,i2(z) on äG.then (a) Pr'i   ] = 

PT*   ] = S and  •'■   (z) = *  (s) in S ; (b) Either one of the sets NT*   ] ,   NU   ] 

is empty or Nf*.] = N[\li] =Rand t (z) ■!.(>) in R. 

Proof. We introduce the functions 

^1{z) = 
j*2(«) in G 

^(z) in ^-G , 

|i!(. (z) in G 
1 

iJz) in A2 -G 
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Clearly both functions are admissible for IV in their domains of definition. 

Furthermore,  it is easy to verify the identities 

TCujU T[U2]= TUi:i+ T[I1I2], 

LtCu^J + LC(a2)_] = L[*l)_] + LCU2)_] , 

ACUJ3+ A[U2] = AC^]* AU2]. 

Consequently 

wCuj] + wCuj] = w[':1]+ w[t2]. 

This implies that 

WCu   1 < WU ] or W[a,] < WU   ] 
j-J —        1 «  ■■ 2 

Suppose that e. g. , the first inequality holds.    If \i. does not belong to ß , 

then the solution v(z)c£// of the restricted minimum-problem in ^. defined 

by OCu|] satisfies 

w[v]<w[Ul]<wC1if1] 

which is impossible.    Therefore u(r) 617 v^   . 
1 Qj 

Suppose first that 0.(z)< 0 is   not everywhere true on äG.   Then we 

define the sets 

P* = PUJDDG, P** = PLjlfll^-G) . 

P2 = P[^230G. P2' =p[o2]n(^2-G), 

and 

p =ap*napr (i=i.2) 
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where 

p.CäG , 
i 

and p,  is not empty.    The function    .(z) is harmonic in P.,   and 

ajUMjU)- o 

>l< >!: 
there.    If p.  is not empty,   then P.   f I P^ is not empty because of con- 

tinuity.    Thus by analytic continuation 

(1) ^(z) = tjU) lnPj*Opr 

But outside G u,{z) =    ?(
z) by definition,   hence 

(2) .^z)«  *2(l)       in       S!::::  «   PJ1,    riF^^ 

(S       is not empty because of continuity) .    By analytic continuation into 

P, OP,    it can be shown that (2) is valid in the whole of S =P[ V 1 ] PPT ; 2] 

Hence in particular 

'Mz) = '^(z) = 0     (open flows) 

..(z) = *2(z) = 1 n (channel flows) 

on the boundary of S.    Since both P[  ,] and P[ -] are simply connected. 

and 

PU1] = PU2] = S 

^(z) = :2(z) in S. 

Let us now assume that everywhere on äQ 

^(z) = .2(z) <0 . 
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(4.4) 

Then 

aocNCfjlONUj] . 

Thii implies GCNLV . JONCIIU], because both right hand sets consist of 

disjoint simply connected open domains.    Thus the function 

^l(z)-\J2(z) 

is harmonic in G,  continuous and vanishing on -G, hence 

(3) ^(z) = v2(z) 

in G.    If R is the union of the open sets where (3) is valid and 'l'.(z) <0,  then 

Mz)=0 on OB . The set Y   =^K)y  cannot be empty since no subset of B is a 

closed curve,  thus cannot form alone a boundary,   v    is part of the boundary 

of S = P^jinP1"^] ,  and for almost all t«Y    and for zeR 

(4) lini.,    —c    ■     Itel  ,      —;  
z -.>|t       at z ->|t        ?it 

By the matching condition (4. 2. 30) the same limit relation holds for zeS,   for 
« 

almost all t€Y    .   The function 

.Si' 3 v _ 
u(z)  =   exp   {i  {—   -    —)}   -1 

is analytic in P and bounded because of the symmetrization property of 

\\<   (z) and   ''   (z) ,  and as just shown has  0 as non-tangential limit on a sub- 

set of 33 of positive measure.    By a theorem of F.  and M, Riesz (1916) 

follows that u(z) vanishes identically in S,   or    '^.(z)   =   ^(z)  there.    This 

also implies that 
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(4.4) 

(b)       First we observe that if N[v.3 consists of more than one dis- 

joint open component,  then all but one of these components have their 

boundaries made ur of sections of äP exclusively.    This follows from 

the symmetrization property of d..   These components are therefore 

completely determined by P,  and (except possibly their ordering) are 

the same for I. and \li   .   The functions   '^.(z) ,   i'   (z) are in turn deter- 

mined in these components because of the uniqueness of the solution of 

the restricted inner minimum-problem.   Thus we only need to concern 

irselves with the components N    ,  N    ,  which are bounded ; in addition 

to sections of 5P ,  by arcs of the bounding streamlines B. , B    respectively. 

If,  N[iii   ] and NL'i'   ]  are not empty,   neither are N'  and N'   ,  for 

otherwise ^N.O0. would consist of a single point,   contradictory to the 
11 

result 3. 6.   By the symmetrization property ^PH^N'O^N'   contains an arc 

Y       of non-zero length,  ans since ir. = lit    in P,   (4) is valid with z€P and 

for almost all  t€'i      .   From this follows that N'   = N'   = N' and iji   = iir    in 

N7  by an argument entirely similar to the one applied after Eq.   (4). 

Corollary 1. If IV for specified v, X and A has two different solutions 

♦ ., t2,  then ;.> '    in \  or vice versa. 

Suppose the statement is not true.    Then let S denote the set on which 

v'j <i'2 ;S and 1 -S are not empty by the assumption.    Then i,= ;2 on ^S. 

Therefore by the lemma C'1 = 11'2 in 1. 

Corollary Z.   If A =E,  then the only solution of IV is the trivial. Other- 

wise with the solution 'l(z) all functions  l'(z+c),c real,  would be solutions. 

Thus \ii(z+c)= v(z) for all c,   which is only possible for *=y. 
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(4.5) 

Thus at least one case is found when the only solution of IV is the 

trivial one.    However,  for most other domains non-trivial solutions exist 

for some value« of uu, as wai shown in Sections 1. 5, 2.9, 

4. 5 Theorem.   If t(') is a solution of IV,  then 'ii(z) has only one 

relative minimum (on the imaginary axis,  of course) and therefore the set 

NU] is connected . 

Proof. Suppose i(z) has relative minima in ip, iq, and a 

maximum in ir,p<r<q.    Then for sufficiently small h>0, 

(1) 

t(ip-ih) > Hip)   . 

i(ip)       <  i|f(ip+ih) , 

\|i(ir)       > *(ir+üi)  , 

(2) h<p, h<q-r . 

Suppose that S   is the set in which 

iHz+ih)<iti(z) . 

S.   is open, therefore it can be represented in the form 

TU  
The reader may be reminded that the results of Section 3. 1 only assert the 

connectedness of the closure of N. 
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(4.6) 

where   a,       are connected open sets which are pairwise disjoint. Since 

| is symmetrized,  if some component a   contains a point ?   + il    it contains 

the point it)    as well.    Therefore from the relationships (1) follows that 

there is a component,  say o   ,  in the strip 

g(i(p-h))<^<g(i(r + h)  ) 

On the boundary of ax 

(3) 'Hz+ih) = y(z) . 

This implies by the previous lemma that (3) is valid everywhere in PM, 

which ie impossible. 

4. 6 The domain N of the free-eddy solution    of problem III is connected. 

Proof. If N is not connected,  then there is a y   >0 such that ——— ' o 

Nj = |« y>yo,   BCNJ 

and 

N    = N*N.> -^ z: y<y  , z€NJ 

are disjoint.    The intersection of *he set N with any line y = const,  is an 

interval symmetric to the imaginary axis.    Given any e>0,  one can choose 

the positive numbers h-.h., such that the intersections with the lines 

y=y  -h1=b,y=y +h?=b+h are of equal length 2a,   and that the segment ofN 

between these lines is inside a circle lz-iy   | < c . 

i.e. , the solution for the domains ^=E,E either the strip 0<ri<n or thi 

halfplane r|>0. 
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(4.6) 

Consider the sets 

Ni= {a:y>b+h. 2 6N} 

N* =|z: y<b,   zCNJ , 

N2 =|«:z + h6N2| ; 

N   BNjUNj , N      = Int (NjUN2   ) . 

Thus the set N arises from N by slicing off the tips of N. and N- lying in 

the region b<y<b+h, and N is obtained from N by shifting the upper 

disjoint part N, downwards until it touches the lower part N, and forming 

of the two sets a single open set connected on the line y = b. The potential 

flow around N which satisfies the appropriate boundary conditions at <B, ß 

(and on 0 ) is a function i|f (z) and the one around N is a function t|i (z). 

It is clear that 

(i) TC^]<TU+] 

because the function 

i* 
i|f+(z) in PW 

0      in PU*]- PU] 

is a competing function for the outer minimum-problem for the domain N . 

If any translations of the upper part N2  of N    are allowed,  then T[; ' ] will 

increase if N^  is translated horizontally.    In fact,  such translation happens 

to be for A = E(free eddy) the inverse operation of symmetrization,   and the 

latter is known to reduce the functional T.   Let I   (z) denote the stream 
* c 

function obtained Dy translation of N    by the complex vector r .   Then,  as 

iust shown,   ilf    is a concave function of c for real c, and therefore by theorem J c 
3. 1, concave for imaginary c.  On the other hand, 

T [*  ]  - + " as c -« + i«   . c 
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(4.6) 

Therefore there is a constant K for any C>0,   such that for c = ic   ,  (c   real) 

(21 4TC*c]-K>0 

A A 
if c^C, wheneverc  is such that the translated N-     does not intersect N  , 

i. e., for Oc^-h. 

From (2) follows that 

TU*]> TU**]+ Kh, 

and in combination with (1), 

(3) TU+]> TU**] + Kh . 

The set N, obtained from N. by a downward shift -ih intersects N^ in the 

set N ,  which is "symmetrized" to the imaginary axis.    N   is bounded by 

the curves 

a^ 'z:z£öN2, y>bj-, 

= |z:zeöN'1, y<b]-. a2 

The n 

iKz+ihM(z)<0      on Qj , 

\Hz+ihM(z)>0       on o2 . 

Therefore there is a Jordan-curve 6 connecting the points ib ± a inside N  , 

such that \Hz+ih)= i|f(z) along 9.    We define now a new admissible function 

I (z) of the minimum problem III as follows.    The curve 6 with the portion 

of ON   under y =b bound a domain M-,  and with the portion of ON. over y = b 

the domain M, .    We introduce 
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(4.6) 

I    (z)       in P    =A-N , 

Y(z)=(i|r(i) inM2 

♦(z+ih)     in Mj 

i (z) is clearly continuous,  and therefore by its definition admissible for 

the problem III or IV.    Further 

(4) TU+]=TU**]<TU+].Kh, 

(5) DIY   ]=DU|M_] + D[il(**|M,]<DU   1. 2 1 
■ 

(6) AC,I']=A<M1) + A(M2) = AW-A<No)> AW-2shf 

(7) L[Y_]=L[*_]-LUjN2-M2]-LCMz+ilOlNj   -MJ]^ LU_]-48hM 

where 

u= max U(z)| 
N 

and 

s=sup[x:^(x+iy)<0, b<y<b+h} 

or,in other words: 2s is the maximal width of N . o 

Assuming that L[ili] = m, (which can be achieved by normalization), 

from (4), (5), (6) and (7) we find easily 

V/[Y]<v'U]-(iC-2X8- 4TU]^)h + OU2h2) . 

Since s -*0 as h-O, we find that for sufficiently small h, 

vyCY]<vyU]. 

a contradiction. 
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SUMMARY OF RESULTS AND CONCLUDING REMARKS 

This work gives a partial answer to Batchelor's problem outlined in 

the introduction.   The existence of solutions is shown in flows in regions 

bounded by a single or two streamlines,  and characterized by mapping 

functions f(C) described in Section 1.1. Considering all functions u admiss- 

ible for which the functionals involved are finite,    the minimum-problems 

(III) T[u] - X Afu]  = min 

(side condition:  L[u] ■ m) and 

(IV) T[u] - \ ACu] - UJ Lfu] = min 

(no side condition) were formulated.    They were found "well-^osed" in the 

2 
sense of Section 1.5 if X< A = l/f^«)    and in case of problem IV,   channel- 

flows also 

where 

1    fm\l      i / X\ 

f(I|-     inf       (4 (T^I  -  x)} 
3 

These bounds cannot be improved.   Problem IV is never well-posed and 

has no solution for open flows. 
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It was found that well-posed problems III and IV have solutions 

w(z) which are admissible.   These solutions satisfy 

V2* « wSU)  , 

where S(I|I) « 1 if t< 0 and = 0 if ijt >0 ; 4 is continuous in A ,  and assumes 

the boundary value(s) 0, (rr) on the bounding streamlines.   Further 

* = A^y+0(1)       (|z|-») . 

The function iKz) « H^ + i^) !■ even in f   and an increasing function of |?| 

("symmetrized").   The set N is bounded.   The sets  N =1^(2)1. o|    and 

P = I z: \|((z) > 0| are simply connected, and in case of problem IV or in case 

of the "free eddy" problem even the open set N is simply connected. Further 

N and P have no "internal" boundary points : ^P = 5P,   ^N = 3N.   The function 

|Vi|(| has a uniform positive lower bound in P, and if the boundary B   is empty 

(open flows) or straight,  then this lower bound is \    .  Consequently the 

boundary 
Y » apn^N 

is a rectifiable curve of finite length.   äi|i/(5z has non-tangential limits   ilip(t), 

'i' (t) for almost all   tgy ,  if t is approached from either side of Y. and 

jyp(t)] - wp(t)] =- (x/4)T2. 

This implies the weaker result : 

P N 

almost everywhere on y . 
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The solution of IV is not necessarily non-trivial,   i. e. ,  the set N 

may be empty.   Such is the case if A has straight boundaries.    The solution 

of IV is non-trivial if X>l/|f'(o)|     .   Uniqueness 01 the solution of 

Batchelor's problem was not proved and in some cases the solution is 

demonstrably not unique.   Nevertheless the solutions satisfy another 

criterion of being physically well-posed ; the set of solutions for given 

A , X andmor ID   depends continuously on these. 

The present study falls short both in the theoretical and the practical 

sense from the desired goal.   From the theoretical point of view,   it does not 

answer some very important questions relative to the smoothness of the 

boundary.   It seems      ry plausible especially in view of the results of 

Garabedian,  Spencer,   Lewy, Schiffer    on the analiticity of the free boundary 

in cavitation flows,  that the boundary  y is smooth or even can be described 

by infinitely differentiate functions.   No such results could be proved for 

Batchelor-flows.   It is also plausible that at the point of separation the curve 

Y has a tangent which then has to be the tangent of the curve S in that point. 

Attempts to prove this were also mostly unsuccessful.   Also,   no explicit 

solutions in particular cases are in sight,   such as the ones found for cavity 

flows. 

The more general case of domains not permitting symmetrization 

is interesting because it includes a model of the wake formation in flows 
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behind bounded symmetric obstacles.   Preliminary investigations indicated 

that the present analysis could be broadened to include more general domains. 

However then all arguments based on the powerful tool of symmetrization 

have to be replaced, and some re'alta will be lost or weakened in the process. 

In particular, the connectedness and boundedness of the eddy domain cannot 

be guaranteed,  only that the components of the eddy region are adjacent to the 

domain boundary.    This iä quite natural, for if e. g.   6 consists of widely 

separated indentations connedted by intervals of the real axis,   it is quite 

plausible that the wake will not be connected,  nor bounded if the indentations 

extend to infinity.    The matching condition can be prsved in a slightly weaker 

form. 

From the practical point of view,  no atter ^t has been made to connect 

this analysis with the theory of the boundary layers.   Anyway no boundary 

layer analysis is possible in the case of infinitely long boundary lines.   In the 

case of "free eddies" this objection can be eliminated since reflection to the 

real axis may produce a flow region without boundaries or with finite boundar- 

ies.   In the case of flows around finite bodies not included in the present study, 

the latter may lend enough plausibility to the existence of the flow to encourage 

an attempt for the numerical determination of such flows based on the mini- 

mum-principles discussed.   However, any numerical study is made rather 

difficult since the two unknown parameters (A. and  UJ or m) have to be deter- 

mined from the matching of outer,  inner, and boundary layer flows near the 
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Separation and reattachment -joints.    In the case of flows in halfplanes 

(free eddies) the set of solutions reduces essentially to a one-parameter 

family by similarity considerations.   Since arbitrary sections of the real 

axis wetted by the eddy domain can be replaced by flat plates,  it seems 

possible that any choice of the parameters  \ , m determines a limit case 

of viscous flows. 
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